Evidence is presented that π-bonding is present in the surface dimers on clean Si(100)–(2×1) and, as a consequence, that hydrogen atoms preferentially pair on surface dimer atoms even at low coverage. We propose a simple lattice gas model in order to calculate the equilibrium distribution of doubly- and singly-occupied dimers as a function of coverage and temperature, and show that even a very conservative estimate of the enthalpy difference between hydrogen on doubly- and singly-occupied dimers can explain the observed first-order desorption kinetics.
We report on the electrical characteristics of InGaN∕GaN multiple-quantum-well light-emitting diodes (LEDs) grown on sapphire and free-standing GaN substrates. As a result of defect reduction, the tunneling current in the homoepitaxially grown LED was remarkably suppressed and diffusion-recombination current dominated at intermediate forward bias. Temperature-dependent measurements showed that the remaining reverse current originated from carrier generation and tunneling associated with deep-level traps. In contrast, the LED on sapphire exhibited dominant tunneling characteristics over a wide range of applied bias. Nanoscale electrical characterization using conductive atomic force microscopy revealed highly localized currents at V-defects, indicating that the associated dislocations are electrically active and likely responsible for the high leakage current in the heteroepitaxially grown LED.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.