Two-dimensional layered semiconductors present a promising material platform for band-to-band-tunneling devices given their homogeneous band edge steepness due to their atomically flat thickness. Here, we experimentally demonstrate interlayer band-to-band tunneling in vertical MoS2/WSe2 van der Waals (vdW) heterostructures using a dual-gate device architecture. The electric potential and carrier concentration of MoS2 and WSe2 layers are independently controlled by the two symmetric gates. The same device can be gate modulated to behave as either an Esaki diode with negative differential resistance, a backward diode with large reverse bias tunneling current, or a forward rectifying diode with low reverse bias current. Notably, a high gate coupling efficiency of ∼80% is obtained for tuning the interlayer band alignments, arising from weak electrostatic screening by the atomically thin layers. This work presents an advance in the fundamental understanding of the interlayer coupling and electron tunneling in semiconductor vdW heterostructures with important implications toward the design of atomically thin tunnel transistors.
We have studied the electrical characteristics and optical properties of GaN/InGaN multiple quantum well (MQW) light-emitting diodes (LEDs) grown by metalorganic chemical vapor deposition. It appears that there is an essential link between material quality and the mechanism of current transport through the wide-bandgap p-n junction. Tunneling behavior dominates throughout all injection regimes in a device with a high density of defects in the space-charge region, which act as deep-level carrier traps. However, in a high-quality LED diode, temperature-dependent diffusion-recombination current has been identified with an ideality factor of 1.6 at moderate biases. Light output has been found to follow a power law, i.e., in both devices. In the high-quality LED, nonradiative recombination centers are saturated at current densities as low as 1.4 10 2 A/cm 2 . This low saturation level indicates that the defects in GaN, especially the high density of edge dislocations, are generally optically inactive.Index Terms-Carrier injection, GaN, light-emitting diode (LED), multiple quantum well.
Excitatory and inhibitory postsynaptic potentials are the two fundamental categories of synaptic responses underlying the diverse functionalities of the mammalian nervous system. Recent advances in neuroscience have revealed the co-release of both glutamate and GABA neurotransmitters from a single axon terminal in neurons at the ventral tegmental area that can result in the reconfiguration of the postsynaptic potentials between excitatory and inhibitory effects. The ability to mimic such features of the biological synapses in semiconductor devices, which is lacking in the conventional field effect transistor-type and memristor-type artificial synaptic devices, can enhance the functionalities and versatility of neuromorphic electronic systems in performing tasks such as image recognition, learning, and cognition. Here, we demonstrate an artificial synaptic device concept, an ambipolar junction synaptic devices, which utilizes the tunable electronic properties of the heterojunction between two layered semiconductor materials black phosphorus and tin selenide to mimic the different states of the synaptic connection and, hence, realize the dynamic reconfigurability between excitatory and inhibitory postsynaptic effects. The resulting device relies only on the electrical biases at either the presynaptic or the postsynaptic terminal to facilitate such dynamic reconfigurability. It is distinctively different from the conventional heterosynaptic device in terms of both its operational characteristics and biological equivalence. Key properties of the synapses such as potentiation and depression and spike-timing-dependent plasticity are mimicked in the device for both the excitatory and inhibitory response modes. The device offers reconfiguration properties with the potential to enable useful functionalities in hardware-based artificial neural network.
The reverse breakdown voltage of p-GaN Schottky diodes was used to measure the electrical effects of high density Ar or H2 plasma exposure. The near surface of the p-GaN became more compensated through introduction of shallow donor states whose concentration depended on ion flux, ion energy, and ion mass. At high fluxes or energies, the donor concentration exceeded 1019 cm−3 and produced p-to-n surface conversion. The damage depth was established as ∼400 Å based on electrical and wet etch rate measurements. Rapid thermal annealing at 900 °C under a N2 ambient restored the initial electrical properties of the p-GaN.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.