We demonstrate for the first time the feasibility of all-diamond integrated optic devices over large areas using a combination of photolithography, reactive ion etching (RIE) and focused ion beam (FIB) techniques. We confirm the viability of this scalable process by demonstrating guidance in a two-moded ridge waveguide in type 1b single crystal diamond. This opens the door to the fabrication of a diamond-based optical chip integrating functional elements such as X-crossings, Y-junctions, evanescent couplers, Bragg reflectors/couplers and various interferometers.
A simple heat imprinting method for producing stable long-period gratings (LPGs) in microstructured polymer optical fibre (mPOF) is presented as well as the examination of their lifetime and the modelling results of these gratings. Writing LPGs in mPOF presents opportunities for sensors in fibre that can withstand greater bending and strain and are adaptable to specific applications through modification of the cladding structure.
Abstract:To take existing quantum optical experiments and devices into more practical regimes requires the construction of robust, solid-state implementations. In particular, to observe the strong-coupling regime of atom-photon interactions requires very small cavities and large quality factors. Here we show that the slot-waveguide geometry recently introduced for photonic applications is also promising for quantum optical applications in the visible regime. We study diamond-and GaP-based slot-waveguide cavities (SWCs) compatible with diamond colour centres e.g. nitrogenvacancy (NV) defect. We show that one can achieve increased singlephoton Rabi frequencies of order O(10 11 ) rad s -1 in ultra-small cavity modal volumes, nearly 2 orders of magnitude smaller than previously studied diamond-based photonic crystal cavities.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.