Immersive environments have gradually become standard for visualizing and analyzing large or complex datasets that would otherwise be cumbersome, if not impossible, to explore through smaller scale computing devices. However, this type of workspace often proves to possess limitations in terms of interaction, flexibility, cost and scalability. In this paper we introduce a novel immersive environment called Dataspace, which features a new combination of heterogeneous technologies and methods of interaction towards creating a better team workspace. Dataspace provides 15 high-resolution displays that can be dynamically reconfigured in space through robotic arms, a central table where information can be projected, and a unique integration with augmented reality (AR) and virtual reality (VR) headsets and other mobile devices. In particular, we contribute novel interaction methodologies to couple the physical environment with AR and VR technologies, enabling visualization of complex types of data and mitigating the scalability issues of existing immersive environments. We demonstrate through four use cases how this environment can be effectively used across different domains and reconfigured based on user requirements. Finally, we compare Dataspace with existing technologies, summarizing the trade-offs that should be considered when attempting to build better collaborative workspaces for the future.
Figure 1: Immersive Insights is a collaborative, hybrid analytics system for exploratory data analysis. The application, implemented in a Dataspace environment [18], leverages multimodal interaction and combines the use of technologies such as 1) high-resolution movable screens to visualize statistical information, 2) a central projection table providing an overview of the current analysis, and 3) an augmented reality view to visualize and interact with high-dimensional data.
ABSTRACTIn the past few years, augmented reality (AR) and virtual reality (VR) technologies have experienced terrific improvements in both accessibility and hardware capabilities, encouraging the application of these devices across various domains. While researchers have demonstrated the possible advantages of AR and VR for certain data science tasks, it is still unclear how these technologies would perform in the context of exploratory data analysis (EDA) at large. In particular, we believe it is important to better understand which level of immersion EDA would concretely benefit from, and to quantify the contribution of AR and VR with respect to standard analysis workflows.In this work, we leverage a Dataspace reconfigurable hybrid reality environment to study how data scientists might perform EDA in a co-located, collaborative context. Specifically, we propose the design and implementation of Immersive Insights, a hybrid analytics system combining high-resolution displays, table projections, and augmented reality (AR) visualizations of the data.We conducted a two-part user study with twelve data scientists, in which we evaluated how different levels of data immersion affect the EDA process and compared the performance of Immersive Insights with a state-of-the-art, non-immersive data analysis system.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.