Image segmentation is a fundamental task in many computer vision applications. In this paper, we propose a new unsupervised color image segmentation algorithm, which exploits the information obtained from detecting edges in color images in the CIE L *a *b * color space. To this effect, by using a color gradient detection technique, pixels without edges are clustered and labeled individually to identify some initial portion of the input image content. Elements that contain higher gradient densities are included by the dynamic generation of clusters as the algorithm progresses. Texture modeling is performed by color quantization and local entropy computation of the quantized image. The obtained texture and color information along with a region growth map consisting of all fully grown regions are used to perform a unique multiresolution merging procedure to blend regions with similar characteristics. Experimental results obtained in comparison to published segmentation techniques demonstrate the performance advantages of the proposed method.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.