Neogene-to-Recent deformation is widespread on and adjacent to Australia's ‘passive’ margins. Elevated historical seismic activity and relatively high levels of Neogene-to-Recent tectonic activity are recognized in the Flinders and Mount Lofty Ranges, the SE Australian Passive Margin, SW Western Australia and the North West Shelf. In all cases the orientation of palaeostresses inferred from Neogene-to-Recent structures is consistent with independent determinations of the orientation of the present-day stress field.Present-day stress orientations (and neotectonic palaeostress trends) vary across the Australian continent. Plate-scale stress modelling that incorporates the complex nature of the convergent plate boundary of the Indo-Australian Plate (with segments of continent–continent collision, continent–arc collision and subduction) indicates that present-day stress orientations in the Australian continent are consistent with a first-order control by plate-boundary forces. The consistency between the present-day, plate-boundary-sourced stress orientations and the record of deformation deduced from neotectonic structures implicates plate boundary forces in the ongoing intraplate deformation of the Australian continent.Deformation rates inferred from seismicity and neotectonics (as high as 10−16 s−1) are faster than seismic strain rates in many other ‘stable’ intraplate regions, suggestive of unusually high stress levels imposed on the Australian intraplate environment from plate boundary interactions many thousands of kilometres distant. The spatial overlap of neotectonic structures and zones of concentrated historical seismicity with ancient fault zones and/or regions of enhanced crustal heat flow indicates that patterns of active deformation in Australia are in part, governed, by prior tectonic structuring and are also related to structural and thermal weakening of continental crust. Neogene-to-Recent intraplate deformation within the Australian continent has had profound and under-recognized effects on hydrocarbon occurrence, both by amplifying some hydrocarbon-hosting structures and by inducing leakage from pre-existing traps due to fault reactivation or tilting.
Meteorological and geophysical hazards will concur and interact with coronavirus disease impacts in many regions on Earth. These interactions will challenge the resilience of societies and systems. A comparison of plausible COVID-19 epidemic trajectories with multi-hazard time-series curves enables delineation of multi-hazard scenarios for selected countries (United States, China, Australia, Bangladesh) and regions (Texas). In multi-hazard crises, governments and other responding agents may be required to make complex, highly compromised, hierarchical decisions aimed to balance COVID-19 risks and protocols with disaster response and recovery operations. Contemporary socioeconomic changes (e.g. reducing risk mitigation measures, lowering restrictions on human activity to stimulate economic recovery) may alter COVID-19 epidemiological dynamics and increase future risks relating to natural hazards and COVID-19 interactions. For example, the aggregation of evacuees into communal environments and increased demand on medical, economic, and infrastructural capacity associated with natural hazard impacts may increase COVID-19 exposure risks and vulnerabilities. COVID-19 epidemiologic conditions at the time of a natural hazard event might also influence the characteristics of emergency and humanitarian responses (e.g. evacuation and sheltering procedures, resource availability, implementation modalities, and assistance types). A simple epidemic phenomenological model with a concurrent disaster event predicts a greater infection rate following events during the pre-infection rate peak period compared with post-peak events, highlighting the need for enacting COVID-19 counter measures in advance of seasonal increases in natural hazards. Inclusion of natural hazard inputs into COVID-19 epidemiological models could enhance the evidence base for informing contemporary policy across diverse multi-hazard scenarios, defining and addressing gaps in disaster preparedness strategies and resourcing, and implementing a future-planning systems approach into contemporary COVID-19 mitigation strategies. Our recommendations may assist governments and their advisors to develop risk reduction strategies for natural and cascading hazards during the COVID-19 pandemic.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.