Nitrogenase in Rhodospirillum rubrum is inactivated in vivo by the covalent modification of the Fe protein with a nucleotide. The preparation of two modified peptides derived from proteolytic digestion of the inactive Fe protein is described. The modifying group is shown to be adenosine diphosphoribose, linked through the terminal ribose to a guanidino nitrogen of arginine. The structural features were established by using proton and phosphorus NMR, positiveand negative-ion fast atom bombardment mass spectrometry, and fast atom bombardment/collisionally activated decomposition mass spectrometry. Spectral methods along with chromatographic analysis and sequential degradation established the sequence of the modification site of Fe protein as GlyArg(ADR-ribose)-Gly-Val-Ile-Thr. This corresponds to the sequence in the Fe protein from Azotobacter vinelandii for amino acid residues 99 to 104.
Polypyrrole-based colloids with differing surface chemistries were compared with respect to the specific activity of immobilized antibody. Monoclonal antibody to the alpha subunit of human chorionic gonadotropin (hCG) was modified by incorporation of cystamine into the Fc-carbohydrate, followed by reduction with dithiothreitol resulting in the generation of 4.5 free thiols per IgG. The reduced IgG was added to clean, unmodified and surface-modified polypyrrole colloids. Functionalized colloids included carboxylate-modified polypyrrole, poly[pyrrole-co-1-(2-carboxyethyl) pyrrole]-silica composite, and amine forms of the carboxylated colloids. The amine-functionalized colloids were subsequently treated with sulfosuccinimidyl 4-(N-maleimidomethyl)cyclohexane-1-carboxylate to provide thiol-reactive maleimide surface groups. Following the conjugation of IgG to the colloids, bound and soluble antibody activity was quantitated using a sequentially competitive immunoassay for hCG, based on an automated commercial hCG kit. The results indicated that all forms of polypyrrole retained the equivalence of between 12 and 33 micrograms of IgG activity/mg of colloidal solids, relative to the unmodified soluble IgG.
Structure-function studies of antibody-antigen systems include the identification of amino acid residues in the antigen that interact with an antibody and elucidation of their individual contributions to binding affinity. We used fluorescence correlation spectroscopy (FCS) and alanine-scanning mutagenesis to characterize the interactions of brain natriuretic peptide (BNP) with two monoclonal antibodies. Human BNP is a 32 amino acid residue long cyclic polypeptide with the ring structure confined between cysteines in positions 10 and 26. It is an important cardiovascular hormone and a valuable diagnostic cardiac marker. We compare the binding strength of the N-terminus Alexa488-labeled BNP, native cyclic BNP, BNP alanine-substituted mutants, linear BNP, and its short fragments to determine the individual contributions of amino acid residues included in the continuous antigenic epitopes that are recognized by two different monoclonal antibodies raised toward BNP. Implementation of FCS for these studies offers all of the advantages of solution phase measurements, including high sensitivity, simplicity of manipulation with reagents, and elimination of solid phase interferences or separation steps. Significant differences in the molecular masses of the free and antibody bound BNP results in a substantial ( approximately 2.5-times) increase in the diffusion rates. Determination of the binding constants and inhibition effects by measuring the diffusion rates of the ligand at the single molecule level introduces the ultimate opportunity for researching systems where the fluorescence intensity and/or fluorescence anisotropy do not change upon interaction of the ligand with the protein. Monoclonal antibodies 106.3 and BC203 demonstrate high affinities to BNP and bind two distant epitopes forming robust antibody sandwiches. Both antibodies are used in Abbott diagnostic assays on AxSYM, IMx, and Architect platforms.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.