Mitogen-activated protein (MAP) kinase lies at the convergence of various extracellular ligand-mediated signaling pathways. It is activated by the dual-specificity kinase, MAP kinase kinase or MEK. MAP kinase inactivation is mediated by dephosphorylation via specific MAP kinase phosphatases (MKPs). One MKP (MKP-1 (also known as 3CH134, Erp, or CL100)) has been reported to be expressed in a wide range of tissues and cells. We report the identification of a second widely expressed MKP, termed MKP-2, isolated from PC12 cells. MKP-2 showed significant homology with MKP-1 (58.8% at the amino acid level) and, like MKP-1, displayed vanadate-sensitive phosphatase activity against MAP kinase in vitro. Overexpression of MKP-2 in vivo inhibited MAP kinase-dependent gene transcription in PC12 cells. MKP-2 differed from MKP-1 in its tissue distribution and in its extent of induction by growth factors and agents that induce cellular stress, suggesting that these MKPs may have distinct physiological functions.
Mammalian reproductive cycles are controlled by an intricate interplay between the hypothalamus, pituitary and gonads. Central to the function of this axis is the ability of the pituitary gonadotrope to appropriately respond to stimulation by gonadotropin-releasing hormone (GnRH). This review focuses on the role of cell signaling and in particular, mitogen-activated protein kinase (MAPK) activities regulated by GnRH that are necessary for normal fertility. Recently, new mouse models making use of conditional gene deletion have shed new light on the relationships between GnRH signaling and fertility in both male and female mice. Within the reproductive axis, GnRH signaling is initiated through discrete membrane compartments in which the receptor resides leading to the activation of the extracellular signal-regulated kinases (ERKs 1/2). As defined by gonadotrope-derived cellular models, the ERKs appear to play a central role in the regulation of a cohort of immediate early genes that regulate the expression of late genes that, in part, define the differentiated character of the gonadotrope. Recent data would suggest that in vivo, conditional, pituitary-specific disruption of ERK signaling by GnRH leads to a gender-specific perturbation of fertility. Double ERK knockout in the anterior pituitary leads to female infertility due to LH biosynthesis deficiency and a failure in ovulation. In contrast, male mice are modestly LH deficient; however, this does not have an appreciable impact on fertility.
Gonadotropin-releasing hormone (GnRH) interacts with a G protein-coupled receptor and increases the transcription of the glycoprotein hormone alpha-subunit gene. We have explored the possibility that mitogen-activated protein kinase (MAPK) plays a role in mediating GnRH effects on transcription. Activation of the MAPK cascade by an expression vector for a constitutively active form of the Raf-1 kinase led to stimulation of the alpha-subunit promoter in a concentration-dependent manner. GnRH treatment was found to increase the phosphorylation of tyrosine residues of MAPK and to increase MAPK activity, as determined by an immune complex kinase assay. A reporter gene assay using the MAPK-responsive, carboxy-terminal domain of the Elk1 transcription factor was also consistent with GnRH-induced activation of MAPK. Interference with the MAPK pathway by expression vectors for kinase-defective MAPKs or vectors encoding MAPK phosphatases reduced the transcription-stimulating effects of GnRH. The DNA sequences which are required for responses to GnRH include an Ets factor-binding site. An expression vector for a dominant negative form of Ets-2 was able to reduce GnRH effects on expression of the alpha-subunit gene. These findings provide evidence that GnRH treatment leads to activation of the MAPK cascade in gonadotropes and that activation of MAPK contributes to stimulation of the alpha-subunit promoter. It is likely that an Ets factor serves as a downstream transcriptional effector of MAPK in this system.
Recently, a pituitary-specific enhancer was identified within the 5' flanking region of The glycoprotein hormones are a family of heterodimeric proteins which consist of a common a subunit noncovalently associated with a hormone-specific 13 subunit (37). The glycoprotein hormones include the pituitary hormones, luteinizing hormone, follicle-stimulating hormone, and thyroid-stimulating hormone. In addition, some species also synthesize a chorionic gonadotropin within the placenta. Within a species, the glycoprotein hormones all share a common a subunit, while the unique ,B subunits specify the biological activity of the heterodimer. In the pituitary gland, luteinizing hormone and follicle-stimulating hormone are synthesized within cells which are designated gonadotropes, while thyroid-stimulating hormone is synthesized in thyrotropes. Thus, the glycoprotein hormone a-subunit gene is expressed within two different cell types in the pituitary and in some species within the placenta. The mechanisms mediating the tissue-specific expression of the a-subunit gene have been the focus of a large number of studies. While a number of DNA elements which are important for at-subunit expression in the placenta have been identified (3,4,11,12,25,28,34,46), much less is known concerning requirements for expression in the pituitary. It has been demonstrated that reporter genes containing various * Corresponding author. Mailing address:
Specialized membrane microdomains known as lipid rafts are thought to contribute to G-protein coupled receptor (GPCR) signaling by organizing receptors and their cognate signaling molecules into discrete membrane domains. To determine if the GnRHR, an unusual member of the GPCR superfamily, partitions into lipid rafts, homogenates of ␣T3-1 cells expressing endogenous GnRHR or Chinese hamster ovary cells expressing an epitope-tagged GnRHR were fractionated through a sucrose gradient. We found the GnRHR and c-raf kinase constitutively localized to low density fractions independent of hormone treatment. Partitioning of c-raf kinase into lipid rafts was also observed in whole mouse pituitary glands. Consistent with GnRH induced phosphorylation and activation of c-raf kinase, GnRH treatment led to a decrease in the apparent electrophoretic mobility of c-raf kinase that partitioned into lipid rafts compared with unstimulated cells. Cholesterol depletion of ␣T3-1 cells using methyl--cyclodextrin disrupted GnRHR but not c-raf kinase association with rafts and shifted the receptor into higher density fractions. Cholesterol depletion also significantly attenuated GnRH but not phorbol ester-mediated activation of extracellular signal-related kinase (ERK) and c-fos gene induction. Raft localization and GnRHR signaling to ERK and c-Fos were rescued upon repletion of membrane cholesterol. Thus, the organization of the GnRHR into low density membrane microdomains appears critical in mediating GnRH induced intracellular signaling.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.