Cyclic adenosine monophosphate (cAMP) has tissue-specific effects on growth, differentiation, and gene expression. We show here that cAMP can activate the transcription factor Elk-1 and induce neuronal differentiation of PC12 cells via its activation of the MAP kinase cascade. These cell type-specific actions of cAMP require the expression of the serine/threonine kinase B-Raf and activation of the small G protein Rap1. Rap1, activated by mutation or by the cAMP-dependent protein kinase PKA, is a selective activator of B-Raf and an inhibitor of Raf-1. Therefore, in B-Raf-expressing cells, the activation of Rap1 provides a mechanism for tissue-specific regulation of cell growth and differentiation via MAP kinase.
Activation of mitogen-activated protein (MAP) kinase (also known as extracellular-signal-regulated kinase, or ERK) by growth factors can trigger either cell growth or differentiation. The intracellular signals that couple growth factors to MAP kinase may determine the different effects of growth factors: for example, transient activation of MAP kinase by epidermal growth factor stimulates proliferation of PC12 cells, whereas they differentiate in response to nerve growth factor, which acts partly by inducing a sustained activation of MAP kinase. Here we show that activation of MAP kinase by nerve growth factor involves two distinct pathways: the initial activation of MAP kinase requires the small G protein Ras, but its activation is sustained by the small G protein Rap1. Rap1 is activated by CRK adaptor proteins and the guanine-nucleotide-exchange factor C3G, and forms a stable complex with B-Raf, an activator of MAP kinase. Rap1 is required for at least two indices of neuronal differentiation by nerve growth factor: electrical excitability and the induction of neuron-specific genes. We propose that the activation of Rap1 by C3G represents a common mechanism to induce sustained activation of the MAP kinase cascade in cells that express B-Raf.
Replicative senescence and oxidative stress have been implicated in ageing, endothelial dysfunction and atherosclerosis. Replicative senescence is determined primarily by telomere integrity. In endothelial cells the glutathione redox-cycle plays a predominant role in the detoxification of peroxides. The aim of this study was to elucidate the role of the glutathione-dependent antioxidant system on the replicative capacity and telomere dynamics of cultured endothelial cells. Human umbilical vein endothelial cells were serially passaged while exposed to regular treatment with 0.1 μM tert-butyl hydroperoxide, a substrate of glutathione peroxidase, or 10 μM L-buthionine-[S,R]-sulphoximine, an inhibitor of glutathione synthesis. Both treatments induced intracellular oxidative stress but had no cytotoxic or cytostatic effects. Nonetheless, treated cultures entered senescence prematurely (30 versus 46 population doublings), as determined by senescence-associated β-galactosidase staining and a sharp decrease in cell density at confluence. In cultures subjected to oxidative stress terminal restriction fragment (TRF) analysis demonstrated faster telomere shortening (110 versus 55 bp/population doubling) and the appearance of distinct, long TRFs after more than 15-20 population doublings. Fluorescence in situ hybridisation analysis of metaphase spreads confirmed the presence of increased telomere length heterogeneity, and ruled out telomeric end-to-end fusions as the source of the long TRFs. The latter was also confirmed by Bal31 digestion of genomic DNA. Similarly, upregulation of telomerase could not account for the appearance of long TRFs, as oxidative stress induced a rapid and sustained decrease in this activity. These findings demonstrate a key role for glutathione-dependent redox homeostasis in the preservation of telomere function in endothelial cells and suggest that loss of telomere integrity is a major trigger for the onset of premature senescence under mild chronic oxidative stress.
Adamantinomatous craniopharyngiomas (ACPs) are clinically challenging tumours, the majority of which have activating mutations in CTNNB1. They are histologically complex, showing cystic and solid components, the latter comprised of different morphological cell types (e.g. β-catenin-accumulating cluster cells and palisading epithelium), surrounded by a florid glial reaction with immune cells. Here, we have carried out RNA sequencing on 18 ACP samples and integrated these data with an existing ACP transcriptomic dataset. No studies so far have examined the patterns of gene expression within the different cellular compartments of the tumour. To achieve this goal, we have combined laser capture microdissection with computational analyses to reveal groups of genes that are associated with either epithelial tumour cells (clusters and palisading epithelium), glial tissue or immune infiltrate. We use these human ACP molecular signatures and RNA-Seq data from two ACP mouse models to reveal that cell clusters are molecularly analogous to the enamel knot, a critical signalling centre controlling normal tooth morphogenesis. Supporting this finding, we show that human cluster cells express high levels of several members of the FGF, TGFB and BMP families of secreted factors, which signal to neighbouring cells as evidenced by immunostaining against the phosphorylated proteins pERK1/2, pSMAD3 and pSMAD1/5/9 in both human and mouse ACP. We reveal that inhibiting the MAPK/ERK pathway with trametinib, a clinically approved MEK inhibitor, results in reduced proliferation and increased apoptosis in explant cultures of human and mouse ACP. Finally, we analyse a prominent molecular signature in the glial reactive tissue to characterise the inflammatory microenvironment and uncover the activation of inflammasomes in human ACP. We validate these results by immunostaining against immune cell markers, cytokine ELISA and proteome analysis in both solid tumour and cystic fluid from ACP patients. Our data support a new molecular paradigm for understanding ACP tumorigenesis as an aberrant mimic of natural tooth development and opens new therapeutic opportunities by revealing the activation of the MAPK/ERK and inflammasome pathways in human ACP.Electronic supplementary materialThe online version of this article (10.1007/s00401-018-1830-2) contains supplementary material, which is available to authorized users.
Mitogen-activated protein (MAP) kinase lies at the convergence of various extracellular ligand-mediated signaling pathways. It is activated by the dual-specificity kinase, MAP kinase kinase or MEK. MAP kinase inactivation is mediated by dephosphorylation via specific MAP kinase phosphatases (MKPs). One MKP (MKP-1 (also known as 3CH134, Erp, or CL100)) has been reported to be expressed in a wide range of tissues and cells. We report the identification of a second widely expressed MKP, termed MKP-2, isolated from PC12 cells. MKP-2 showed significant homology with MKP-1 (58.8% at the amino acid level) and, like MKP-1, displayed vanadate-sensitive phosphatase activity against MAP kinase in vitro. Overexpression of MKP-2 in vivo inhibited MAP kinase-dependent gene transcription in PC12 cells. MKP-2 differed from MKP-1 in its tissue distribution and in its extent of induction by growth factors and agents that induce cellular stress, suggesting that these MKPs may have distinct physiological functions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.