Free radicals have previously been shown to kill the immature stages of the trematode, Schistosoma mansoni but their effect on newly excysted juvenile (NEJ) flukes of Fasciola hepatica has not been established. Using acetaldehyde and xanthine oxidase to chemically generate reactive oxygen intermediates (ROI), up to 61% of NEJ were killed but only when exposed to high levels of ROI. At low concentrations of acetaldehyde and xanthine oxidase as sources of reactive oxygen intermediates, only 6-29% of NEJ were killed compared with 70-92% of schistosomula. Incubation with lipopolysaccharide (LPS)-stimulated rat peritoneal lavage cells (PLCs) killed only 7-15% of NEJ whereas 78-87% of schistosomula were killed under the same conditions by a mechanism dependent on the production of reactive nitrogen intermediates. Relative to immature and adult parasites, NEJ expressed 2.5-20-fold lower levels of superoxide dismutase and glutathione S-transferase but no catalase activity was detected. Incubation of NEJ with inhibitors of peroxidases and glutathione metabolism increased the mean killing of NEJ by LPS-stimulated rat PLCs to 40-75%. These results demonstrate that, in comparison to schistosomula of S. mansoni, NEJ of F. hepatica are relatively resistant to killing by free radicals and this resistance could, in part, be due to the activity of oxidant scavenger enzymes of NEJ.
Infective L3s (iL3s) of parasitic nematodes share common behavioural, morphological and developmental characteristics with the developmentally arrested (dauer) larvae of the free-living nematode Caenorhabditis elegans. It is proposed that similar molecular mechanisms regulate entry into or exit from the dauer stage in C. elegans, and the transition from free-living to parasitic forms of parasitic nematodes. In C elegans, one of the key factors regulating the dauer transition is the insulin-like receptor (designated Ce-DAF-2) encoded by the gene Ce-daf-2. However, nothing is known about DAF-2 homologues in most parasitic nematodes. Here, using a PCR-based approach, we identified and characterised a gene (Hc-daf-2) and its inferred product (Hc-DAF-2) in Haemonchus contortus (a socioeconomically important parasitic nematode of ruminants). The sequence of Hc-DAF-2 displays significant sequence homology to insulin receptors (IR) in both vertebrates and invertebrates, and contains conserved structural domains. A sequence encoding an important proteolytic motif (RKRR) identified in the predicted peptide sequence of Hc-DAF-2 is consistent with that of the human IR, suggesting that it is involved in the formation of the IR complex. The Hc-daf-2 gene was transcribed in all life stages of H. contortus, with a significant up-regulation in the iL3 compared with other stages. To compare patterns of expression between Hc-daf-2 and Ce-daf-2, reporter constructs fusing the Ce-daf-2 or Hc-daf-2 promoter to sequence encoding GFP were microinjected into the N2 strain of C. elegans, and transgenic lines were established and examined. Both genes showed similar patterns of expression in amphidial (head) neurons, which relate to sensation and signal transduction. Further study by heterologous genetic complementation in a daf-2-deficient strain of C. elegans (CB1370) showed partial rescue of function by Hc-daf-2. Taken together, these findings provide a first insight into the roles of Hc-daf-2/Hc-DAF-2 in the biology and development of H. contortus, particularly in the transition to parasitism.
Aims:To determine the composition and temporal stability of the gut (faecal) microbiota of sheep (Ovis aries). Methods and Results: Microbial population dynamics was conducted using ARISA (28 sheep) and 16S rRNA sequencing (11 sheep). Firmicutes and Bacteroidetes were the predominant bacterial phyla, constituting~80% of the total population. The core faecal bacterial microbiota of sheep consisted of 67 of 136 detected families and 91 of 215 detected species. Predominant microbial taxa included Ruminococcaceae, unassigned families in Bacteroidales and Clostridiales, Verrucomicrobiaceae and Paraprevotellaceae. Diversity indices and core microbiota composition demonstrated the stability of the core microbiota over 2-4 weeks. The core microbiota remained similar over 5 months. Conclusions: Temporal stability of the sheep microbiota is high over 2-4 weeks in the absence of experimental variables. The core microbiota of Merino sheep shares taxa found in other breeds of sheep and other ruminants. Significance and Impact of the Study: Numerous studies seek to investigate the impact of experimental variables on gut microbiota composition. To do so, knowledge of the innate stability (or instability) of the microbiota over an experimental time course is required, independent of other variables. We have demonstrated high stability of the gut microbiota in sheep over 3-4 weeks, with moderate stability over~5 months.
Gastrointestinal nematode (GIN) parasites pose a significant economic burden particularly in small ruminant production systems. Anthelmintic resistance is a serious concern to the effective control of GIN parasites and has fuelled the focus to design and promote sustainable control of practices of parasite control. Many facets of sustainable GIN parasite control programs rely on the ability to diagnose infection both qualitatively and quantitatively. Diagnostics are required to determine anthelmintic efficacies, for targeted treatment programs and selection of animals for parasite resistant breeding. This review describes much of the research investigated to date to improve the current diagnostic for the above practices which is based on counting the number of parasite eggs in faeces.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.