The viability of commercial potato production is influenced by spatial and temporal variability in soils and agroclimate, and the availability of water resources where supplementary irrigation is required. Soil characteristics and agroclimatic conditions greatly influence the cultivar choice, agronomic husbandry practices and the economics of production. Using the latest (UKCP09) scenarios of climate change for the UK, the present paper describes a methodology using pedo-climatic functions and a geographical information system (GIS) to model and map current and future land suitability for potato production in England and Wales. The outputs identify regions where rainfed production is likely to become limiting and where future irrigated production would be constrained due to shortages in water availability. The results suggest that by the 2050s, the area of land that is currently well or moderately suited for rainfed production would decline by 88 and 74%, respectively, under the 'most likely' climate projections for the low emissions scenario and by 95 and 86%, respectively, for the high emissions scenario, owing to increased likelihood of dry conditions. In many areas, rainfed production would become increasingly risky. However, with supplementary irrigation, c. 0·85 of the total arable land in central and eastern England would remain suitable for production, although most of this is in catchments where water resources are already over-licensed and/or over-abstracted; the expansion of irrigated cropping is thus likely to be constrained by water availability. The increase in the volume of water required due to the switch from rainfed-to irrigatedpotato cropping is likely to be much greater than the incremental increase in water demand solely on irrigated potatoes. The implications of climate change on the potato industry, the adaptation options and responses available, and the uncertainty associated with the land suitability projections, are discussed.
Experiments were conducted over the period 1987–94 at Cambridge University Farm and two other sites to examine the effect of various husbandry factors, particularly variety and irrigation regime, on rate, depth and density of rooting in potatoes. Maximum rooting depth ranged from 59 to 140 cm, indicating that potatoes can root to considerable depths and thereby have access to large volumes of water to satisfy the potential demand for water created by the atmospheric conditions and the size of the canopy. Root extension vertically through the soil profile was best described as a three-phase process: an initial rapid period lasting 3–5 weeks with growth rates c. 1·2 cm/day, a second period of slower growth (c. 0·8 cm/day), followed by cessation of root extension for the rest of the life of the crop. Variety had a major influence on the ultimate depth of rooting, primarily owing to variations in the length of the different periods of rooting rather than the rate in each period. It was observed that changes in the rate, or the cessation of root penetration were always preceded 4–9 days earlier by a change in the rate, or cessation, of leaf appearance. This feature should make it possible to characterize the duration of rooting of varieties through measurement of leaf emergence. Varieties which ceased leaf production early, such as Atlantic, were found to have a duration of root growth of c. 60 days, with Cara rooting for c. 30 days longer. Maximal total root length (TRL) and root length density (RLD) in the experiments reported were 16·9 km/m2 and 5·5 cm/cm3, respectively, similar to those found previously in potatoes and crops such as sugar beet, but considerably greater than many other vegetables. Rooting density decreased with depth, but the root systems were not as surface-oriented as many other studies have shown. When TRL was close to its maximum, the vertical distribution of RLD showed that between 40 and 73% was confined to the upper 30 cm, with irrigated crops possessing a greater proportion of their roots in the plough layer. Despite being planted in rows 70–91 cm apart, rooting systems were homogeneously distributed in a horizontal direction by c. 35 days after emergence, at which time the roots had reached a depth of c. 50 cm. Therefore, apart from a short period after emergence, the potato crop is capable of accessing considerable volumes of soil from which to extract water and nutrients. Ensuring that soil conditions are conducive to maximal rates of root growth should be the target for growers, since this will lead to a more efficient use of soil water and irrigation.
SUMMARYSince many soils used for growing potatoes in the UK are likely to be close to their plastic limit for cultivation during early spring, there exists the potential for soil compaction to occur during planting which will restrict root penetration. A series of experiments showed that soil compaction delayed emergence, reduced rate of leaf appearance and ground cover expansion, shortened canopy cover duration and restricted light interception, which combined to reduce tuber yield. Rooting density and maximum depth of rooting were reduced, particularly where compaction was shallow. In some soils, irrigation helped alleviate some of the effects of compaction but in others it exacerbated their severity. Using a cone penetrometer, relationships between rate of root penetration and soil resistance (Ω) were established from a number of experiments and replicated blocks in commercial fields and an overall relationship of the form y=16·3–4·08Ω mm/day was produced. Root penetration rates of c. 20 mm/day were measured in the intensively-cultivated ridge zone but growth rates were halved at a Ω of 1·5 MPa. A survey of 602 commercial fields showed that two thirds of fields had Ωs ⩾3 MPa (where root growth rates would be <2 mm/day) within the top 0·55 m of the soil profile. Thus, rooting depth is likely to be considerably shallower than desirable and lead to inefficiency of water and nutrient utilization. The use of powered cultivators to separate stones and clods from beds or ridges and produce a fine seedbed is now almost universally adopted in the UK. However, the system is both time and energy inefficient and increases the risk of creating soil compaction, particularly at shallow depths. All cultivation equipment has been shown to cause compaction and it is suggested that the consequences of the shortening of the growing season from delaying planting by a few days to allow the soil to dry are far less than the yield and quality losses caused by compaction.
Experiments were conducted on sandy loam soils at Cambridge University Farm over the period 1989–99 to examine the effects of irrigation regime and variety on water uptake (WU) in potatoes. Unirrigated crops extracted water from considerable distances ahead of the rooting front but frequently watered crops took up water from depths shallower than the current depth of rooting. There was an increase in the extraction of soil water at depth if crops were irrigated less frequently at moderate (i.e. 40 mm) soil moisture deficits (SMD). The SMD measured at different positions across the ridge always differed and the relationship changed during the season. This is of concern since most reports on water use in potatoes are based on a single measurement position for the neutron probe in the centre of the ridge and this location over-estimates crop water use. Crops grown on the flat had a more uniform extraction of soil water across the row width than crops grown in ridges but there was no evidence that having one part of the rooting system drier than another affected overall crop water use. Once rooting systems were established to considerable depth, WU continued from deeper roots even though upper horizons were periodically re-wetted by irrigation. For this reason, it proved impossible to relate WU to rooting density in specific horizons over the course of the season. Only early in the season did the proportion of total WU correspond reasonably closely with the proportion of total root length in each horizon. It appeared that the pattern and extent of soil drying created by a crop changes the horizons where water is extracted at different growth stages and the relative rooting density in a particular horizon is not a good indicator of the potential to take up water from that depth. Although rooting density decreased rapidly with increasing depth, roots deeper in the profile contributed a considerable component of total crop water requirement irrespective of the water status of horizons closer to the soil surface.A series of close relationships were established between the ratio of actual : potential evapotranspiration and SMD for different daily evaporative rates. These showed that there was a limiting deficit at which the ratio of actual : potential evapotranspiration decreased rapidly with increasing SMD and this limiting deficit was inversely related to daily evapotranspiration rate. However, even at small SMDs, as daily evapotranspiration rate increased there was a significant, slow decrease in actual : potential evapotranspiration ratio. In order to maintain potential evapotranspiration rates in conditions of extreme demand in the UK (e.g. 5–7 mm/day), crops need to be maintained at <25 mm deficit but allowable deficits can be increased as demand moderates.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.