Diverse taxa have undergone phenological shifts in response to anthropogenic climate change. While such shifts generally follow predicted patterns, they are not uniform, and interspecific variation may have important ecological consequences. We evaluated relationships among species’ phenological shifts (mean flight date, duration of flight period), ecological traits (larval trophic specialization, larval diet composition, voltinism), and population trends in a butterfly community in Pennsylvania, USA, where the summer growing season has become warmer, wetter, and longer. Data were collected over 7–19 years from 18 species or species groups, including the extremely rare eastern regal fritillary Speyeria idalia idalia. Both the direction and magnitude of phenological change over time was linked to species traits. Polyphagous species advanced and prolonged the duration of their flight period while oligophagous species delayed and shortened theirs. Herb feeders advanced their flight periods while woody feeders delayed theirs. Multivoltine species consistently prolonged flight periods in response to warmer temperatures, while univoltine species were less consistent. Butterflies that shifted to longer flight durations, and those that had polyphagous diets and multivoltine reproductive strategies tended to decline in population. Our results suggest species’ traits shape butterfly phenological responses to climate change, and are linked to important community impacts.
The application of complex network theory to community ecology has enabled quantification of interactions among large suites of species and clarified patterns of community structure across systems. Past analyses, however, have assumed that ecological networks are temporally static and persistent and spatially homogeneous, which could confound inference if species interactions vary over time and space. To evaluate temporal and spatial variation in mutualistic networks, therefore, we evaluated the consistency of a nectarivory/pollination network across years, by season, and over space. We tracked nectaring interactions among 37 butterfly and 58 flowering plant taxa during an 11‐yr period (2007–2017), across each summer and over a grassland landscape in Pennsylvania, USA. The composition of butterflies, plants, and their interactions varied markedly across years, months, and sites. Despite this compositional variation, one metric of network structure, nestedness, was invariant, with interactions much more nested than random across all years, months, and sites. Together with previous studies, this result suggests ecological interaction networks are generally more nested than expected by chance. Other measures of network structure were more variable, especially over time. Numbers of plants and interactions varied by year, month, and site. Connectance and numbers of butterflies varied annually and seasonally. Temporal variation in specialization was also evident for some species at an annual level and for the community across the season. We further found highly stable species were almost always generalists, while highly specialized species were almost always temporally and spatially variable, with few exceptions. Together, these results suggest communities are comprised of a reliable core of generalist species, accompanied by a changing suite of specialist species that, when participating in the network, primarily interact with the reliable core species. Our finding of nested mutualistic network centered on stable‐generalist species accompanied by a changing suite of sporadic specialists indicates dynamic changes in ecological communities vary with topological position. This finding further suggests that, even as rare species are highly threatened by species invasion, climate change, and other anthropogenic perturbations, network structure may be robust to species loss and compositional change from these perturbations.
As grassland ecosystems transform globally due to anthropogenic pressures, improvements in our understanding of the effect of management on rare and threatened species in such landscapes has become urgent. Although prescribed fire is a very efficient tool for habitat restoration and endangered species management on fire-adapted ecosystems, the specific mechanisms underlying potential effects of burning on population dynamics of butterfly host plants are poorly understood. We analyzed a 12-year dataset (2004–2015), combining violet abundance, habitat physiognomy and fire history data from a fire-managed system, to determine factors influencing the spatiotemporal distribution and abundance of violets (Viola spp.), the host plants of the threatened eastern regal fritillary (Speyeria idalia idalia) butterfly. Our results demonstrate a critical role for fire in driving both presence and abundance of violets, suggesting management with prescribed fires can effectively promote butterfly host plants. In addition, we determined the character of habitats associated with violet presence and abundance, in particular a strong positive association with biocrusts. These results provide a roadmap for efficient site selection to increase the effectiveness of restoration efforts, including assessment of potential reintroduction sites for regal fritillary and other grassland butterflies and actions to promote the re-establishment of host plants in these sites.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.