Mutations in ric-3 (resistant to inhibitors of cholinesterase) suppress the neuronal degenerations caused by a gain of function mutation in the Caenorhabditis elegans DEG-3 acetylcholine receptor. RIC-3 is a novel protein with two transmembrane domains and extensive coiled-coil domains. It is expressed in both muscles and neurons, and the protein is concentrated within the cell bodies. We demonstrate that RIC-3 is required for the function of at least four nicotinic acetylcholine receptors. However, GABA and glutamate receptors expressed in the same cells are unaffected. In ric-3 mutants, the DEG-3 receptor accumulates in the cell body instead of in the cell processes. Moreover, co-expression of ric-3 in Xenopus laevis oocytes enhances the activity of the C.elegans DEG-3/DES-2 and of the rat a-7 acetylcholine receptors. Together, these data suggest that RIC-3 is speci®cally required for the maturation of acetylcholine receptors.
Synaptic vesicles dock to the plasma membrane at synapses to facilitate rapid exocytosis. Docking was originally proposed to require the soluble N-ethylmaleimide–sensitive fusion attachment protein receptor (SNARE) proteins; however, perturbation studies suggested that docking was independent of the SNARE proteins. We now find that the SNARE protein syntaxin is required for docking of all vesicles at synapses in the nematode Caenorhabditis elegans. The active zone protein UNC-13, which interacts with syntaxin, is also required for docking in the active zone. The docking defects in unc-13 mutants can be fully rescued by overexpressing a constitutively open form of syntaxin, but not by wild-type syntaxin. These experiments support a model for docking in which UNC-13 converts syntaxin from the closed to the open state, and open syntaxin acts directly in docking vesicles to the plasma membrane. These data provide a molecular basis for synaptic vesicle docking.
Mating induces pronounced changes in female reproductive behavior, typically including a dramatic reduction in sexual receptivity. In Drosophila, postmating behavioral changes are triggered by sex peptide (SP), a male seminal fluid peptide that acts via a receptor (SPR) expressed in sensory neurons (SPSNs) of the female reproductive tract. Here, we identify second-order neurons that mediate the behavioral changes induced by SP. These SAG neurons receive synaptic input from SPSNs in the abdominal ganglion and project to the dorsal protocerebrum. Silencing SAG neurons renders virgin females unreceptive, whereas activating them increases the receptivity of females that have already mated. Physiological experiments demonstrate that SP downregulates the excitability of the SPSNs, and hence their input onto SAG neurons. These data thus provide a physiological correlate of mating status in the female central nervous system and a key entry point into the brain circuits that control sexual receptivity.
The complex lipid constituents of the eukaryotic plasma membrane are precisely controlled in a cell-type-specific manner, suggesting an important, but as yet, unknown cellular function. Neuronal membranes are enriched in long-chain polyunsaturated fatty acids (LC-PUFAs) and alterations in LC-PUFA metabolism cause debilitating neuronal pathologies. However, the physiological role of LC-PUFAs in neurons is unknown. We have characterized the neuronal phenotype of C. elegans mutants depleted of LC-PUFAs. The C. elegans genome encodes a single Δ6-desaturase gene (fat-3), an essential enzyme for LC-PUFA biosynthesis. Animals lacking fat-3 function do not synthesize LC-PUFAs and show movement and egg-laying abnormalities associated with neuronal impairment. Expression of functional fat-3 in neurons, or application of exogenous LC-PUFAs to adult animals rescues these defects. Pharmacological, ultrastructural and electrophysiological analyses demonstrate that fat-3 mutant animals are depleted of synaptic vesicles and release abnormally low levels of neurotransmitter at cholinergic and serotonergic neuromuscular junctions. These data indicate that LC-PUFAs are essential for efficient neurotransmission in C. elegans and may account for the clinical conditions associated with mis-regulation of LC-PUFAs in humans.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.