Genetic engineering offers a means of incorporating new virus resistance traits into existing desirable plant cultivars. The initial attempts to create transgenes conferring virus resistance were based on the pathogen-derived resistance concept. The expression of the viral coat protein gene in transgenic plants was shown to induce protective effects similar to classical cross protection, and was therefore distinguished as 'coat-protein-mediated' protection. Since then, a large variety of viral sequences encoding structural and non-structural proteins were shown to confer resistance. Subsequently, non-coding viral RNA was shown to be a potential trigger for virus resistance in transgenic plants, which led to the discovery of a novel innate resistance in plants, RNA silencing. Apart from the majority of pathogen-derived resistance strategies, alternative strategies involving virus-specific antibodies have been successfully applied. In a separate section, efforts to combat viroids in transgenic plants are highlighted. In a final summarizing section, the potential risks involved in the introduction of transgenic crops and the specifics of the approaches used will be discussed.
Virus-resistant transgenic plants (VRTPs) hold the promise of enormous benefit for agriculture. However, over the past ten years, questions concerning the potential ecological impact of VRTPs have been raised. In some cases, detailed study of the mode of action of the resistance gene has made it possible to eliminate the source of potential risk, notably the possible effects of heterologous encapsidation on the transmission of viruses by their vectors. In other cases, the means of eliminating likely sources of risk have not yet been developed. When such residual risk still exists, the potential risks associated with the VRTP must be compared with those associated with nontransgenic plants so that risk assessment can fully play its role as part of an overall analysis of the advantages and disadvantages of practicable solutions to the problem solved by the VRTP.
Cucumber mosaic cucumovirus (CMV) infection but not tomato black ring nepovirus infection counteracted post-transcriptional gene silencing (PTGS) of nitrate reductase (Nia) or beta-glucuronidase (uidA) transgenes in newly developing leaves of tobacco and Arabidopsis plants. PTGS did not affect meristems of noninfected silenced plants, indicating that the interfering effect of CMV is not likely to occur in the meristem. Models are proposed to explain how CMV (which has no sequence similarity to the Nia or uidA transgenes) can inhibit cellular factors involved in the RNA degradation step of PTGS and/or inhibit the systemic spread of the silencing signal to tissues emerging from the meristem.
In order to study the expression in plants of the rolD promoter of Agrobacterium rhizogenes, we have constructed chimaeric genes placing the coding region of the gusA (uidA) marker gene under control of two rolD promoter fragments of different length. Similar results were obtained with both genes. Expression studies were carried out in transformed R1 progeny plants. In mature transformed tobacco plants, the rolD-gus genes were expressed strongly in roots, and to much lower levels in stems and leaves. This pattern of expression was transmitted to progeny, though the ratio of the level of expression in roots relative to that in leaves was much lower in young seedlings. The degree of root specificity in rolD-gus transformants was less than that of a gene constructed with domain A of the CaMV 35S promoter, domA-gus, but the level of root expression was much higher than with the latter gene. However, the level of expression of the rolD-gus genes was less than that of a gus gene with a 35S promoter with doubled domain B, 35S2-gus. The rolD-gus genes had a distinctive pattern of expression in roots, compared to that of the two other genes, with the strongest GUS activity observed in the root elongation zone and in vascular tissue, and much less in the root apex.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.