Summary Changing winter climate extremes are expected to result in the poleward migration of mangrove forests at the expense of salt marshes. Although mangroves and marshes are both highly valued ecosystems, the ecological implications of mangrove expansion have not been fully investigated. Here, we examined the effects of mangrove expansion on below‐ground properties related to peat development and carbon storage. We investigated plant–soil interactions in marshes and across mangrove forest structural gradients in three locations in the northern Gulf of Mexico (USA). We compared our results to those from terrestrial grasslands where the effects of woody plant encroachment are often influenced by rainfall and plant traits. Abiotic conditions at our study locations differed, particularly in terms of physicochemical properties related to precipitation. Marsh species composition, marsh above‐ground biomass, and mangrove forest structural complexity also varied across these locations. Marshes in the driest location (Central Texas) had higher salinities and were dominated by low biomass succulent plants and lower soil carbon pools. Marshes in the wetter, less saline locations (Louisiana and North Florida) contained high biomass grasses and higher soil carbon pools. At all locations, above‐ground biomass and above‐ground carbon pools were higher in mangroves than marshes; however, below‐ground soil carbon pools were only higher in mangroves than marshes in the driest location. In the wetter locations, the linkages between mangrove forest structure and soil properties were minimal or not significant. However, in the driest location, there was a significant increase in soil properties related to peat development and carbon storage with increased mangrove forest structural development. Synthesis: Our results indicate that the ecological implications of woody plant encroachment in tidal saline wetlands are dependent upon precipitation controls of plant–soil interactions. Although the above‐ground effects of mangrove expansion are consistently large, below‐ground influences of mangrove expansion appear to be greatest along low‐rainfall coasts where salinities are high and marshes being replaced are carbon poor and dominated by succulent plants. Collectively, these findings complement those from terrestrial ecosystems and reinforce the importance of considering rainfall and plant–soil interactions within predictions of the ecological effects of woody plant encroachment.
Soil redox potentials and pore water sulfide concentrations on a mangrove island in the Belizean barrier reef system were significantly correlated with the presence of the aerial roots of mangrove trees. Sulfide concentrations were three to five times lower near the prop roots of Rhizophora mangle (red mangrove) and the pneumatophores of Avicennia germinans (black mangrove) than in adjacent (≤ 1 meter away) unvegetated sediment. Soil redox potentials were also significantly higher near the aerial roots. A comparison of the two species revealed that sulfide concentrations in the rhizosphere of R. mangle were as low as that of A. germinans. However, sulfide concentrations in areas occupied by the black mangrove were variable and a function of pneumatophore density. The occurrence of an oxidized rhizosphere around the roots of both species suggests that the adult trees are equally capable of exploiting reduced sediments as long as their respective pathways for root aeration are functional.
Rising sea levels threaten the sustainability of coastal wetlands around the globe, thus understanding how increased inundation alters the elevation change mechanisms in these systems is increasingly important. Typically, the ability of coastal marshes to maintain their position in the intertidal zone depends on the accumulation of both organic and inorganic materials, so one, if not both, of these processes must increase to keep pace with rising seas, assuming all else constant. To determine the importance of vegetation in these processes, we measured elevation change and surface accretion over a 4‐year period in recently subsided, unvegetated marshes, resulting from drought‐induced marsh dieback, in paired planted and unplanted plots. We compared soil and vegetation responses in these plots with paired reference plots that had neither experienced dieback nor subsidence. All treatments (unvegetated, planted, and reference) were replicated six times. The recently subsided areas were 6–10 cm lower in elevation than the reference marshes at the beginning of the study; thus, mean water levels were 6–10 cm higher in these areas vs. the reference sites. Surface accretion rates were lowest in the unplanted plots at 2.3 mm yr−1, but increased in the presence of vegetation to 16.4 mm yr−1 in the reference marsh and 26.1 mm yr−1 in the planted plots. The rates of elevation change were also bolstered by the presence of vegetation. The unplanted areas decreased in elevation by 9.4 mm yr−1; whereas the planted areas increased in elevation by 13.3 mm yr−1, and the reference marshes increased by 3.5 mm yr−1. These results highlight the importance of vegetation in the accretionary processes that maintain marsh surface elevation within the intertidal zone, and provide evidence that coastal wetlands may be able to keep pace with a rising sea in certain situations.
Summary1 Clonal populations face a trade-off between sexual recruitment and vegetative growth and, once established, may undergo continuous declines in genotypic diversity if their sexual recruits make poor competitors. The geological history of delta formation in the Lower Mississippi River Valley was used to age eight S. alterniflora marshes for use in a space-for-time substitution ranging over 1500 years, in order to determine the long-term effects of clonal growth on genotypic diversity in natural populations. 2 We also predicted that highly heterozygous clones are competitively superior, leading to an increase in the overall level of genetic diversity as a marsh ages and/or to an increasingly positive relationship between clone size and individual heterozygosity, and that the clumping of ramets within clones will occur over increasingly large distances as populations age, while the clumping of genetically related clones will become less pronounced as intraclonal competition begins to obscure the initial effects of localized seedling recruitment. 3 Using molecular markers to differentiate clones, we documented a decline in clonal richness at the rate of approximately 1% 100 years − 1 that was accompanied for the first 300-500 years by an increase in the distance over which clumping of ramets within genets occurred. Older populations, in the 500-1500-year range, showed evidence of clone fragmentation. 4 The spatial clustering of kin was observed for only two marshes, and exhibited no clear relationship with marsh age. 5 Whereas the overall level of genetic diversity was consistent among marshes and showed no clear relationship with marsh age, the relationship between heterozygosity and individual clone size became increasingly pronounced within older marshes. 6 Our results suggest that under natural conditions S. alterniflora marshes will rarely reach ages sufficient for the loss of all clonal diversity, or for the effects of inbreeding and drift to pose a significant threat to population viability.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.