A systematic study on structural and dielectric properties of lead zirconate titanate/(Pb,La)(Zr(1−x)Ti(x))O3 thin films deposited by metalloorganic decomposition technology
We investigated the characteristics of silicon nitride (SiNx) thin films deposited by remote plasma atomic layer deposition (RPALD) using trisilyamine (TSA) and ammonia (NH3) plasma at low temperatures. Although the process window of SiNx thin films is 150–350 °C, considering the refractive index (RI), SiNx thin films deposited at 250–350 °C were focused on for analyses. All of the SiNx films were nearly stoichiometric, regardless of the deposition temperature. As the deposition temperature increased, the RI increased, while the hydrogen content decreased. The defect density also changed at higher deposition temperatures; as the deposition temperature increased, all of the trap densities increased because of the low‐hydrogen content in the SiNx thin films. The characteristics of the SiNx thin film deposited by RPALD could be controlled to adjust the defect density for charge trap flash memory applications by changing the deposition temperature.
The mechanism of reversible hydrogen activation by ansa-aminoboranes, 1-N-TMPH-CH(2)-2-[HB(C(6)F(5))(2)]C(6)H(4) (NHHB), was studied by neutron diffraction and thermogravimetric mass-spectroscopic experiments in the solid state as well as with NMR and FT-IR spectroscopy in solution. The structure of the ansa-ammonium borate NHHB was determined by neutron scattering, revealing a short N-H···H-B dihydrogen bond of 1.67 Å. Moreover, this intramolecular H-H distance was determined in solution to be also 1.6-1.8 Å by (1)H NMR spectroscopic T(1) relaxation and 1D NOE measurements. The X-ray B-H and N-H distances deviated from the neutron and the calculated values. The dynamic nature of the molecular tweezers in solution was additionally studied by multinuclear and variable-temperature NMR spectroscopy. We synthesized stable, individual isotopic isomers NDDB, NHDB, and NDHB. NMR measurements revealed a primary isotope effect in the chemical shift difference (p)Δ(1)H(D) = δ(NH) - δ(ND) (0.56 ppm), and hence supported dihydrogen bonding. The NMR studies gave strong evidence that the structure of NHHB in solution is similar to that in the solid state. This is corroborated by IR studies providing clear evidence for the dynamic nature of the intramolecular dihydrogen bonding at room temperature. Interestingly, no kinetic isotope effect was detected for the activation of deuterium hydride by the ansa-aminoborane NB. Theoretical calculations attribute this to an "early transition state". Moreover, 2D NOESY NMR measurements support fast intermolecular proton exchange in aprotic CD(2)Cl(2) and C(6)D(6).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.