Summary
The aim of this work was to analyse mineral composition and chemical profile of two nonedible fungal species: Ganoderma lucidum and Ganoderma applanatum (Fruška Gora, Serbia) vs. their antioxidant (ABTS and A.E.A.C. assay) and cytotoxic biopotentials (MTT assay on MCF‐7). Both species were analysed for their content of macro‐ and microelements by atomic absorption spectrophotometry, while phenolic profile of EtOH and H2O extracts was examined by LC‐MS/MS technique. Both species mostly contained the following ions: K+ > Ca2+ > Mg2+ > Mn2+ > Zn2+ > Cu2+ > Cr3+. Among nine phenolic compounds, the highest content of vanillic acid was detected in G. applanatum extracts while protocatechuic acid in EtOH extract and quinic acid in H2O extract were mostly contained in G. lucidum. Ganoderma applanatum EtOH extract showed the best antioxidant activities related to its phenolic and flavonoid content. Further, the best cytotoxic effect after 72 h was observed in this extract as well.
In light of climate change, pedunculate oak (Q. robur L.) was marked as the most threatened European tree species. Pedunculate oak is particularly jeopardized by powdery mildew disease caused by Erysiphe alphitoides. We hypothesized that priming of this tree species with ectomycorrhizal fungi could mitigate biotic stress and produce bioprotective properties against the disease. In this study, we have compared oaks’ foliar physiological and biochemical responses upon infection with E. alphitoides in the presence and absence of ectomycorrhizal fungi (ECM). The main aim of this study was to inspect how ECM modulate an oak’s biochemical response to infection with E. alphitoides, particularly at the level of the accumulation of the main polyamines (putrescine, spermidine, and spermine), soluble osmolytes (proline and glycine betaine), and phenolics (total phenolic content, flavonoids, and condensed tannins). A polyamine quantification was performed after derivatization by using high-performance liquid chromatography (HLPC) coupled with fluorescent detection. Oak seedlings inoculated with ECM fungi exhibited significantly higher levels of putrescine, spermine, and proline compared to non-inoculated seedlings, indicating the priming properties of the ECM. E. alphitoides caused an increase in individual and total polyamine content and lipid peroxidation in oak leaves regardless of the effect of ECM, while causing a decrease in physiological and antioxidative parameters and water use efficiency (WUE). Common biochemical parameters may contribute to understanding the underpinning plant defense mechanisms in three-way interactions among plants and pathogenic and ectomycorrhizal fungi and can be used as reliable adaptability descriptors in the context of climate change.
The general aim of this work was to compare the leaf-level responses of different protective components to water deficit and high temperatures in Quercus cerris L. and Quercus robur L. Several biochemical components of the osmotic adjustment and antioxidant system were investigated together with changes in hormones. Q. cerris and Q. robur seedlings responded to water deficit and high temperatures by: (1) activating a different pattern of osmoregulation and antioxidant mechanisms depending on the species and on the nature of the stress; (2) upregulating the synthesis of a newly-explored osmoprotectant, dimethylsulphoniopropionate (DMSP); (3) trading-off between metabolites; and (4) modulating hormone levels. Under water deficit, Q. cerris had a higher antioxidant capacity compared to Q. robur, which showed a lower investment in the antioxidant system. In both species, exposure to high temperatures induced a strong osmoregulation capacity that appeared largely conferred by DMSP in Q. cerris and by glycine betaine in Q. robur. Collectively, the more stress-responsive compounds in each species were those present at a significant basal level in non-stress conditions. Our results were discussed in terms of pre-adaptation and stress-induced metabolic patterns as related to species-specific stress tolerance features.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.