Searching for quantum functionalities requires access to the electronic structure, constituting the foundation of exquisite spin-valley–electronic, topological, and many-body effects. All-optical band-structure reconstruction could directly connect electronic structure with the coveted quantum phenomena if strong lightwaves transported localized electrons within preselected bands. Here, we demonstrate that harmonic sideband (HSB) generation in monolayer tungsten diselenide creates distinct electronic interference combs in momentum space. Locating these momentum combs in spectroscopy enables super-resolution tomography of key band-structure details in situ. We experimentally tuned the optical-driver frequency by a full octave and show that the predicted super-resolution manifests in a critical intensity and frequency dependence of HSBs. Our concept offers a practical, all-optical, fully three-dimensional tomography of electronic structure even in microscopically small quantum materials, band by band.
Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
Drift-diffusion dynamics of a 1D excitonic guide is investigated at room temperature. We demonstrate an unexpected and massive deviation from the Einstein relation and correlate it with the exciton capture processes at defects in tungsten diselenide monolayer.
Theory–experiment advancements are demonstrated to resolve many-body correlations of quantum materials at attosecond time scales. Our theoretical analysis provides an exact view into the microscopic many-body dynamics presented intuitively via a Wigner-function analysis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.