The ubiquitin-proteasome system is a major regulatory pathway of protein degradation and plays an important role in cellular division. Fbxw7 (or hCdc4), a member of the F-box family of proteins, which are substrate recognition components of the multisubunit ubiquitin ligase SCF (Skp1-Cdc53/ Cullin-F-box-protein), has been shown to mediate the ubiquitin-dependent proteolysis of several oncoproteins including cyclin E1, c-Myc, c-Jun, and Notch. The oncogenic potential of Fbxw7 substrates, frequent allelic loss in human cancers, and demonstration that mutation of FBXW7 cooperates with p53 in mouse tumorigenesis have suggested that Fbxw7 could function as a tumor suppressor in human cancer. Here, we carry out an extensive genetic screen of primary tumors to evaluate the role of FBXW7 as a tumor suppressor in human tumorigenesis. Our results indicate that FBXW7 is inactivated by mutation in diverse human cancer types with an overall mutation frequency of f6%. The highest mutation frequencies were found in tumors of the bile duct (cholangiocarcinomas, 35%), blood (T-cell acute lymphocytic leukemia, 31%), endometrium (9%), colon (9%), and stomach (6%). Approximately 43% of all mutations occur at two mutational ''hotspots,'' which alter Arg residues (Arg 465 and Arg 479 ) that are critical for substrate recognition. Furthermore, we show that Fbxw7Arg465 hotspot mutant can abrogate wild-type Fbxw7 function through a dominant negative mechanism. Our study is the first comprehensive screen of FBXW7 mutations in various human malignancies and shows that FBXW7 is a general tumor suppressor in human cancer.
Irreversible oxidation of Cys residues to sulfinic/sulfonic forms typically impairs protein function. We found that persulfidation (CysSSH) protects Cys from irreversible oxidative loss of function by the formation of CysSSO1-3H derivatives that can subsequently be reduced back to native thiols. Reductive reactivation of oxidized persulfides by the thioredoxin system was demonstrated in albumin, Prx2, and PTP1B. In cells, this mechanism protects and regulates key proteins of signaling pathways, including Prx2, PTEN, PTP1B, HSP90, and KEAP1. Using quantitative mass spectrometry, we show that (i) CysSSH and CysSSO3H species are abundant in mouse liver and enzymatically regulated by the glutathione and thioredoxin systems and (ii) deletion of the thioredoxin-related protein TRP14 in mice altered CysSSH levels on a subset of proteins, predicting a role for TRP14 in persulfide signaling. Furthermore, selenium supplementation, polysulfide treatment, or knockdown of TRP14 mediated cellular responses to EGF, suggesting a role for TrxR1/TRP14-regulated oxidative persulfidation in growth factor responsiveness.
Interferon (IFN) ␣ induces a caspase-dependent apoptosis that is associated with activation of the proapoptotic Bak and Bax, loss of mitochondrial membrane potential, and release of cytochrome c. In addition to the onset of the classical Jak-STAT pathway, IFN␣ also induced phosphoinositide 3-kinase (PI3K) activity. Pharmacological inhibition of PI3K activity by Ly294002 disrupted IFN-induced apoptosis upstream of mitochondria. Inhibition of mTOR by rapamycin or by overexpression of a kinase dead mutant of mTOR, efficiently blocked IFN␣-induced apoptosis. A PI3K and mTOR-dependent phosphorylation of p70S6 kinase and 4E-BP1 repressor was induced by IFN␣ treatment of cells and was strongly inhibited by Ly294002 or rapamycin. The activation of Jak-STAT signaling upon IFN␣ stimulation was not affected by abrogating PI3K/mTOR pathway. Neither was the expression of several IFN␣ target genes affected, nor the ability of IFN␣ to protect against virus-induced cell death affected by inhibition of the PI3K/mTOR pathway. These data demonstrate that an intact PI3K/ mTOR pathway is necessary for the ability of IFN␣ to induce apoptosis, whereas activation of the Jak-STAT pathway alone appears to be insufficient for this specific IFN␣-induced effect.
Signal transduction of FMS-like tyrosine kinase 3 (FLT3) is regulated by proteintyrosine phosphatases (PTPs). IntroductionAcute myeloid leukemia (AML) is the most frequent leukemia in adults with improving but still limited treatment possibilities, notably in elderly patients. 1,2 It arises by malignant transformation of myeloid progenitor cells. Among the contributing genetic lesions, mutations in the class III receptor tyrosine kinase (RTK) FMS-like tyrosine kinase 3 (FLT3) occur in approximately 30% of patients. 3 The prevalent type of FLT3 mutations are internal tandem duplications (ITD) of amino acid stretches in the juxtamembrane domain or in the tyrosine kinase domain, 4,5 which confer cytokineindependent proliferation and resistance to apoptosis, and causally contribute to AML in combination with additional genetic lesions. 1 Compared with the ligand-activated wild-type (WT) FLT3, FLT3 ITD mutants exhibit not only elevated but also altered signaling quality, with very pronounced activation of signal transducer and activator of transcription (STAT)5 as one characteristic feature. 6,7 FLT3 ITD also causes the production of high levels of reactive oxygen species (ROS). 8,9 Signal transduction of RTKs is regulated by protein-tyrosine phosphatases (PTPs). PTPs prevent ligand-independent RTK activation, and contribute to modulation and termination of ligand-induced signaling. 10 The activity of PTPs is regulated at several different levels. 11 One regulatory principle is the reversible oxidation of the PTP active-site cysteine, which leads to reversible inactivation. 12,13 Temporary inactivation of negatively regulating PTPs by this mechanism is believed to be important for efficient RTK signal propagation in the cell. 14 A major ROS causing cellular PTP oxidation is hydrogen peroxide (H 2 O 2 ), which can be generated by a dismutase reaction from superoxide anions, the reaction products of NADPH-oxidases. Activation of the NADPH oxidase isoform 1 (NOX1) occurs downstream of RTK activation, and involves activation and membrane translocation of the small guanosine triphosphate (GTP)ase Rac1. 15 ROS generation in the cell is counteracted by efficient ROS decomposing systems. 16 These include peroxiredoxins (Prx), which have a very low K m for H 2 O 2 and can eliminate it even at low concentrations. 17 Relatively little is known about PTPs regulating FLT3 signal transduction. We have previously shown that the nontransmembrane PTPs PTP1B and SHP-1 can potently dephosphorylate FLT3 on overexpression. Further, PTP1B appears important for suppressing signaling of newly synthesized FLT3. 7,18 SHP-2 acts as a positive regulator, because it is important for Erk activation and proliferation induced by ligand-activated WT FLT3. However, it is dispensable for FLT3 ITD-mediated transformation. 19 We previously performed a shRNA-based screen to identify PTPs regulating WT FLT3. The initial screen assessed the effects of shRNAs for 20 PTPs on FL-induced Erk1/2 activation in WT FLT3-expressing 32D cells. Among several potentia...
The inhibitory reversible oxidation of protein tyrosine phosphatases (PTPs) is an important regulatory mechanism in growth factor signaling. Studies on PTP oxidation have focused on pathways that increase or decrease reactive oxygen species levels and thereby affect PTP oxidation. The processes involved in reactivation of oxidized PTPs remain largely unknown. Here the role of the thioredoxin (Trx) system in reactivation of oxidized PTPs was analyzed using a combination of in vitro and cell-based assays. Cells lacking the major Trx reductase TrxR1 (Txnrd1 −/− ) displayed increased oxidation of PTP1B, whereas SHP2 oxidation was unchanged. Furthermore, in vivo-oxidized PTP1B was reduced by exogenously added Trx system components, whereas SHP2 oxidation remained unchanged. Trx1 reduced oxidized PTP1B in vitro but failed to reactivate oxidized SHP2. Interestingly, the alternative TrxR1 substrate TRP14 also reactivated oxidized PTP1B, but not SHP2. Txnrd1-depleted cells displayed increased phosphorylation of PDGF-β receptor, and an enhanced mitogenic response, after PDGF-BB stimulation. The TrxR inhibitor auranofin also increased PDGF-β receptor phosphorylation. This effect was not observed in cells specifically lacking PTP1B. Together these results demonstrate that the Trx system, including both Trx1 and TRP14, impacts differentially on the oxidation of individual PTPs, with a preference of PTP1B over SHP2 activation. The studies demonstrate a previously unrecognized pathway for selective redox-regulated control of receptor tyrosine kinase signaling.redox regulation | cell signaling
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.