We explore the possibility of describing experimental susceptibility spectra of the glass former propylene carbonate with a two-component schematic model of mode-coupling theory (MCT) from above the melting point down to temperatures far below the critical temperature of MCT. By introducing a phenomenological time-dependent hopping rate, the spectra are reproduced in the full frequency and temperature range available. Literature data of dielectric susceptibilities and depolarized Brillouin light-scattering spectra are combined with our measurements of photon correlation spectroscopy to cover up to 18 decades in frequency of spectra for two different dynamical variables. A consistent description of all data sets is obtained by adjusting only a few physically motivated parameters. In particular the excess wing or slow β-relaxation commonly observed in the susceptibility spectra can consistently be modeled as originating from a coupling of the individual experimental probe correlator to the collective density fluctuations.
Although sequence-based noise optimizations faces problems in T1 FLASH and DIXON sequences, there is an important acoustic benefit in T2 TSE and T2 HASTE sequences, which goes along with a maintained image quality and diagnostic confidence.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.