The response of land ecosystems to future climate change is among the largest unknowns in the global climate-carbon cycle feedback. This uncertainty originates from how dynamic global vegetation models (DGVMs) simulate climate impacts on changes in vegetation distribution, productivity, biomass allocation, and carbon turnover. The present-day availability of a multitude of satellite observations can potentially help to constrain DGVM simulations within model-data integration frameworks. Here, we use satellite-derived datasets of the fraction of absorbed photosynthetic active radiation (FAPAR), sun-induced fluorescence (SIF), above-ground biomass of trees (AGB), land cover, and burned area to constrain parameters for phenology, productivity, and vegetation dynamics in the LPJmL4 DGVM. Both the prior and the optimized model accurately reproduce present-day estimates of the land carbon cycle and of temporal dynamics in FAPAR, SIF and gross primary production. However, the optimized model reproduces better the observed spatial patterns of biomass, tree cover, and regional forest carbon turnover. Using a machine learning approach, we found that remaining errors in simulated forest carbon turnover can be explained with bioclimatic variables. This demonstrates the need to improve model formulations for climate effects on vegetation turnover and mortality despite the apparent successful constraint of simulated vegetation dynamics with multiple satellite observations.
Abstract. Vegetation fires influence global vegetation distribution, ecosystem functioning, and global carbon cycling. Specifically in South America, changes in fire occurrence together with land-use change accelerate ecosystem fragmentation and increase the vulnerability of tropical forests and savannas to climate change. Dynamic global vegetation models (DGVMs) are valuable tools to estimate the effects of fire on ecosystem functioning and carbon cycling under future climate changes. However, most fire-enabled DGVMs have problems in capturing the magnitude, spatial patterns, and temporal dynamics of burned area as observed by satellites. As fire is controlled by the interplay of weather conditions, vegetation properties, and human activities, fire modules in DGVMs can be improved in various aspects. In this study we focus on improving the controls of climate and hence fuel moisture content on fire danger in the LPJmL4-SPITFIRE DGVM in South America, especially for the Brazilian fire-prone biomes of Caatinga and Cerrado. We therefore test two alternative model formulations (standard Nesterov Index and a newly implemented water vapor pressure deficit) for climate effects on fire danger within a formal model–data integration setup where we estimate model parameters against satellite datasets of burned area (GFED4) and aboveground biomass of trees. Our results show that the optimized model improves the representation of spatial patterns and the seasonal to interannual dynamics of burned area especially in the Cerrado and Caatinga regions. In addition, the model improves the simulation of aboveground biomass and the spatial distribution of plant functional types (PFTs). We obtained the best results by using the water vapor pressure deficit (VPD) for the calculation of fire danger. The VPD includes, in comparison to the Nesterov Index, a representation of the air humidity and the vegetation density. This work shows the successful application of a systematic model–data integration setup, as well as the integration of a new fire danger formulation, in order to optimize a process-based fire-enabled DGVM. It further highlights the potential of this approach to achieve a new level of accuracy in comprehensive global fire modeling and prediction.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.