The response of the terrestrial carbon cycle to climate change is among the largest uncertainties affecting future climate change projections. The feedback between the terrestrial carbon cycle and climate is partly determined by changes in the turnover time of carbon in land ecosystems, which in turn is an ecosystem property that emerges from the interplay between climate, soil and vegetation type. Here we present a global, spatially explicit and observation-based assessment of whole-ecosystem carbon turnover times that combines new estimates of vegetation and soil organic carbon stocks and fluxes. We find that the overall mean global carbon turnover time is 23(+7)(-4) years (95 per cent confidence interval). On average, carbon resides in the vegetation and soil near the Equator for a shorter time than at latitudes north of 75° north (mean turnover times of 15 and 255 years, respectively). We identify a clear dependence of the turnover time on temperature, as expected from our present understanding of temperature controls on ecosystem dynamics. Surprisingly, our analysis also reveals a similarly strong association between turnover time and precipitation. Moreover, we find that the ecosystem carbon turnover times simulated by state-of-the-art coupled climate/carbon-cycle models vary widely and that numerical simulations, on average, tend to underestimate the global carbon turnover time by 36 per cent. The models show stronger spatial relationships with temperature than do observation-based estimates, but generally do not reproduce the strong relationships with precipitation and predict faster carbon turnover in many semi-arid regions. Our findings suggest that future climate/carbon-cycle feedbacks may depend more strongly on changes in the hydrological cycle than is expected at present and is considered in Earth system models.
Carbon stocks in vegetation play a key role in the climate system1–4, but their magnitude and patterns, their uncertainties, and the impact of land use on them remain poorly quantified. Based on a consistent integration of state-of-the art datasets, we show that vegetation currently stores ~450 PgC. In the hypothetical absence of land use, potential vegetation would store ~916 PgC, under current climate. This difference singles out the massive effect land use has on biomass stocks. Deforestation and other land-cover changes are responsible for 53-58% of the difference between current and potential biomass stocks. Land management effects, i.e. land-use induced biomass stock changes within the same land cover, contribute 42-47% but are underappreciated in the current literature. Avoiding deforestation hence is necessary but not sufficient for climate-change mitigation. Our results imply that trade-offs exist between conserving carbon stocks on managed land and raising the contribution of biomass to raw material and energy supply for climate change mitigation. Efforts to raise biomass stocks are currently only verifiable in temperate forests, where potentials are limited. In contrast, large uncertainties hamper verification in the tropical forest where the largest potentials are located, pointing to challenges for the upcoming stocktaking exercises under the Paris agreement.
Aim To infer a forest carbon density map at 0.01°resolution from a radar remote sensing product for the estimation of carbon stocks in Northern Hemisphere boreal and temperate forests. LocationThe study area extends from 30°N to 80°N, covering three forest biomes -temperate broadleaf and mixed forests (TBMF), temperate conifer forests (TCF) and boreal forests (BFT) -over three continents (North America, Europe and Asia). MethodsThis study is based on a recently available growing stock volume (GSV) product retrieved from synthetic aperture radar data. Forest biomass and spatially explicit uncertainty estimates were derived from the GSV using existing databases of wood density and allometric relationships between biomass compartments (stem, branches, roots, foliage). We tested the resultant map against inventorybased biomass data from Russia, Europe and the USA prior to making intercontinent and interbiome carbon stock comparisons.Results Our derived carbon density map agrees well with inventory data at regional scales (r 2 = 0.70-0.90). While 40.7 ± 15.7 petagram of carbon (Pg C) are stored in BFT, TBMF and TCF contain 24.5 ± 9.4 Pg C and 14.5 ± 4.8 Pg C, respectively. In terms of carbon density, we found 6.21 ± 2.07 kg C m −2 retained in TCF and 5.80 ± 2.21 kg C m −2 in TBMF, whereas BFT have a mean carbon density of 4.00 ± 1.54 kg C m −2 . Indications of a higher carbon density in Europe compared with the other continents across each of the three biomes could not be proved to be significant. Main conclusionsThe presented carbon density and corresponding uncertainty map give an insight into the spatial patterns of biomass and stand as a new benchmark to improve carbon cycle models and carbon monitoring systems. In total, we found 79.8 ± 29.9 Pg C stored in northern boreal and temperate forests, with Asian BFT accounting for 22.1 ± 8.3 Pg C.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.