Sequencing of ribosomal DNA clone libraries amplified from environmental DNA has revolutionized our understanding of microbial eukaryote diversity and ecology. The results of these analyses have shown that protist groups are far more genetically heterogeneous than their morphological diversity suggests. However, the clone library approach is labour-intensive, relatively expensive, and methodologically biased. Therefore, even the most intensive rDNA library analyses have recovered only small samples of much larger assemblages, indicating that global environments harbour a vast array of unexplored biodiversity. High-throughput parallel tag 454 sequencing offers an unprecedented scale of sampling for molecular detection of microbial diversity. Here, we report a 454 protocol for sampling and characterizing assemblages of eukaryote microbes. We use this approach to sequence two SSU rDNA diversity markers-the variable V4 and V9 regions-from 10 L of anoxic Norwegian fjord water. We identified 38 116 V4 and 15 156 V9 unique sequences. Both markers detect a wide range of taxonomic groups but in both cases the diversity detected was dominated by dinoflagellates and close relatives. Long-tailed rank abundance curves suggest that the 454 sequencing approach provides improved access to rare genotypes. Most tags detected represent genotypes not currently in GenBank, although many are similar to database sequences. We suggest that current understanding of the ecological complexity of protist communities, genetic diversity, and global species richness are severely limited by the sequence data hitherto available, and we discuss the biological significance of this high amplicon diversity.
Initial environmental pyrosequencing studies suggested highly complex protistan communities with phylotype richness decisively higher than previously estimated. However, recent studies on individual bacteria or artificial bacterial communities evidenced that pyrosequencing errors may skew our view of the true complexity of microbial communities. We pyrosequenced two diversity markers (hypervariable regions V4 and V9 of the small-subunit rDNA) of an intertidal protistan model community, using the Roche GS-FLX and the most recent GS-FLX Titanium sequencing systems. After pyrosequencing 24 reference sequences we obtained up to 2039 unique tags (from 3879 V4 GS-FLX Titanium reads), 77% of which were singletons. Even binning sequences that share 97% similarity still emulated a pseudodiversity exceeding the true complexity of the model community up to three times (V9 GS-FLX). Pyrosequencing error rates were higher for V4 fragments compared with the V9 domain and for the GS-FLX Titanium compared with the GS-FLX system. Furthermore, this experiment revealed that error rates are taxon-specific. As an outcome of this study we suggest a fast and efficient strategy to discriminate pyrosequencing signals from noise in order to more realistically depict the structure of protistan communities using simple tools that are implemented in standard tag data-processing pipelines.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.