With the addition of the Fine Timing Measurement (FTM) protocol in IEEE 802.11-2016, a promising sensor for smartphone-based indoor positioning systems was introduced. FTM enables a Wi-Fi device to estimate the distance to a second device based on the propagation time of the signal. Recently, FTM has gotten more attention from the scientific community as more compatible devices become available. Due to the claimed robustness and accuracy, FTM is a promising addition to the often used Received Signal Strength Indication (RSSI). In this work, we evaluate FTM on the 2.4 GHz band with 20 MHz channel bandwidth in the context of realistic indoor positioning scenarios. For this purpose, we deploy a least-squares estimation method, a probabilistic positioning approach and a simplistic particle filter implementation. Each method is evaluated using FTM and RSSI separately to show the difference of the techniques. Our results show that, although FTM achieves smaller positioning errors compared to RSSI, its error behavior is similar to RSSI. Furthermore, we demonstrate that an empirically optimized correction value for FTM is required to account for the environment. This correction value can reduce the positioning error significantly.
With the ubiquity of smartphones, the interest in indoor localization as a research area grew. Methods based on radio data are predominant, but due to the susceptibility of these radio signals to a number of dynamic influences, good localization solutions usually rely on additional sources of information, which provide relative information about the current location. Part of this role is often taken by the field of activity recognition, e.g., by estimating whether a pedestrian is currently taking the stairs. This work presents different approaches for activity recognition, considering the four most basic locomotion activities used when moving around inside buildings: standing, walking, ascending stairs, and descending stairs, as well as an additional messing around class for rejections. As main contribution, we introduce a novel approach based on analytical transformations combined with artificially constructed sensor channels, and compare that to two approaches adapted from existing literature, one based on codebooks, the other using statistical features. Data is acquired using accelerometer and gyroscope only. In addition to the most widely adopted use-case of carrying the smartphone in the trouser pockets, we will equally consider the novel use-case of hand-carried smartphones. This is required as in an indoor localization scenario, the smartphone is often used to display a user interface of some navigation application and thus needs to be carried in hand. For evaluation the well known MobiAct dataset for the pocket-case as well as a novel dataset for the hand-case were used. The approach based on analytical transformations surpassed the other approaches resulting in accuracies of 98.0% for pocket-case and 81.8% for the hand-case trained on the combination of both datasets. With activity recognition in the supporting role of indoor localization, this accuracy is acceptable, but has room for further improvement.
No abstract
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.