PurposeShape and exact location of motor cortical areas varies among individuals. The exact knowledge of these locations is crucial for planning of neurosurgical procedures. In this study, we have used robot-assisted image-guided transcranial magnetic stimulation (Ri-TMS) to elicit MEP response recorded for individual muscles and reconstruct functional motor maps of the primary motor cortex.MethodsOne healthy volunteer and five patients with intracranial tumors neighboring the precentral gyrus were selected for this pilot study. Conventional MRI and fMRI were obtained. Transcranial magnetic stimulation was performed using a MagPro X100 stimulator and a standard figure-of-eight coil positioned by an Adept Viper s850 robot. The fMRI activation/Ri-TMS response pattern were compared. In two cases, Ri-TMS was additionally compared to intraoperative direct electrical cortical stimulation.ResultsMaximal MEP response of the m. abductor digiti minimi was located in an area corresponding to the “hand knob” of the precentral gyrus for both hemispheres. Repeated Ri-TMS measurements showed a high reproducibility. Simultaneous registration of the MEP response for m. brachioradialis, m. abductor pollicis brevis, and m. abductor digiti minimi demonstrated individual peak areas of maximal MEP response for the individual muscle groups. Ri-TMS mapping was compared to the corresponding fMRI studies. The areas of maximal MEP response localized within the “finger tapping” activated areas by fMRI in all six individuals.ConclusionsRi-TMS is suitable for high resolution non-invasive preoperative somatotopic mapping of the motor cortex. Ri-TMS may help in the planning of neurosurgical procedures and may be directly used in navigation systems.
We demonstrated that it is possible to automatically acquire an OCT image of the complete resection cavity. Overlaying microscopy images with depth information from OCT could lead to improved detection of residual tumour cells.
The prototype of a robotized optical coherence tomography-integrated operating microscope combines the advantages of a conventional manually controlled operating microscope with a remote-controlled positioning aid and a self-navigating microscope system that performs automated positioning tasks such as surface scans. This demonstrates that, in the future, operating microscopes may be used to acquire intraoperative spatial data, volume changes, and structural data of brain or brain tumor tissue.
We present first results of brain-mapping using robotic Transcranial Magnetic Stimulation. This non-invasive procedure enables the reliable detection of the representation of individual muscles or muscle groups in the motor-cortex. The accuracy is only exceeded by direct electrical stimulation of the brain during surgery. Brain-mapping using robotic TMS can also be used to detect displacements of brain regions caused by tumors. The advantage of TMS is that it is non-invasive. In this study, we compare results from statistical mapping with robotic TMS to results achieved from direct stimulation done during tumor surgery. To our knowledge this is the first study of this type. We mapped the representation of three muscle groups (forearm, pinky and thumb) in tumor patients with the robot-aided TMS protocol and with direct stimulation. The resulting maps agree within 5mm.
The robotic system assists the surgeon, so that he can position the microscope precisely and repeatedly without interrupting the clinical workflow. The combination of manual und automatic control guarantees fast and flexible positioning during surgical procedures.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.