Within the growing family of strained carbon nanohoops and nanobelts, [10]CPP arguably offers the best compromise between synthetic accessibility and strong binding affinity for C60. In this work, we report the synthesis of two nitrogen-containing analogues of [10]CPP and we systematically compare the structure, optoelectronic properties and C60 binding affinities of this small set of structurally similar macrocycles. While Aza[10]CPP outcompetes the parent compound by approximately one order of magnitude in respect to C60 binding, we found that the reverse was true for the methylaza analogue. Transient absorption studies showed that photo-induced electron transfer occurred readily from [10]CPP and its aza-analogue to an encapsulated C60 guest. Formation of a charge separated complex was not observed however for the N-methylated derivative. These insights will prove useful for further applications of strained nanohoops in supramolecular chemistry and organic electronics.
We investigate the gas-phase chemistry of noncovalent complexes of [10]cycloparaphenylene ([10]CPP) with C 60 and C 70 by means of atmospheric pressure photoionization and electrospray ionization mass spectrometry. The literature-known [1 : 1] complexes, namely [10]CPP�C 60 and [10]CPP�C 70 , are observed as radical cations and anions. Their stability and charge distribution are studied using energyresolved collision-induced dissociation (ER-CID). These measurements reveal that complexes with a C 70 core exhibit a greater stability and, on the other hand, that the radical cations are more stable than the respective radical anions. Regarding the charge distribution, in anionic complexes charges are exclusively located on C 60 or C 70 , while the charges reside on [10]CPP in the case of cationic complexes.[2 : 1] complexes of the ([10]CPP 2 �C 60/70 ) + */À * type are observed for the first time as isolated solitary gas-phase species.Here, C 60 -based [2 : 1] complexes are less stable than the respective C 70 analogues. By virtue of the high stability of cationic [1 : 1] complexes, [2 : 1] complexes show a strongly reduced stability of the radical cations. DFT analyses of the minimum geometries as well as molecular dynamics calculations support the experimental data. Furthermore, our novel gas-phase [2 : 1] complexes are also found in 1,2-dichlorobenzene. Insights into the thermodynamic parameters of the binding process as well as the species distribution are derived from isothermal titration calorimetry (ITC) measurements.
Deriving diverse compound libraries from a single substrate in high yields remains to be a challenge in cycloparaphenylene chemistry. In here, a strategy for the late-stage functionalization of shape-persistent alkyne-containing cycloparaphenylene has been explored using readily available azides. The copper-free [3 + 2]azide-alkyne cycloaddition provided high yields (> 90 %) in a single reaction step. Systematic variation of the azides from electron-rich to -deficient shines light on how peripheral substitution influences the characteristics of the resulting adducts. We find that among the most affected properties are the molecular shape, the oxidation potential, excited state features, and affinities towards different fullerenes. Joint experimental and theoretical results are presented including calculations with the state-of-the-art, artificial intelligence-enhanced quantum mechanical method 1 (AIQM1).
In this work, we compare for the first time the stability of [n]cycloparaphenylene ([n]CPP)-based host-guest complexes with Li+@C60 and C60 in the gas and the solution phase. Our gas-phase experiments...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.