The ubiquitous endonuclease RNase P is responsible for the 5' maturation of tRNA precursors. Until the discovery of human mitochondrial RNase P, these enzymes had typically been found to be ribonucleoproteins, the catalytic activity of which is associated with the RNA component. Here we show that, in Arabidopsis thaliana mitochondria and plastids, a single protein called 'proteinaceous RNase P' (PRORP1) can perform the endonucleolytic maturation of tRNA precursors that defines RNase P activity. In addition, PRORP1 is able to cleave tRNA-like structures involved in the maturation of plant mitochondrial mRNAs. Finally, we show that Arabidopsis PRORP1 can replace the bacterial ribonucleoprotein RNase P in Escherichia coli cells. PRORP2 and PRORP3, two paralogs of PRORP1, are both localized in the nucleus.
RNase P is the enzyme that removes 5′ extensions from tRNA precursors. With its diversity of enzyme forms—either protein- or RNA-based, ranging from single polypeptides to multi-subunit ribonucleoproteins—the RNase P enzyme family represents a unique model system to compare the evolution of enzymatic mechanisms. Here we present a comprehensive study of substrate recognition and cleavage-site selection by the nuclear single-subunit proteinaceous RNase P PRORP3 from Arabidopsis thaliana. Compared to bacterial RNase P, the best-characterized RNA-based enzyme form, PRORP3 requires a larger part of intact tRNA structure, but little to no determinants at the cleavage site or interactions with the 5′ or 3′ extensions of the tRNA. The cleavage site depends on the combined dimensions of acceptor stem and T domain, but also requires the leader to be single-stranded. Overall, the single-subunit PRORP appears mechanistically more similar to the complex nuclear ribonucleoprotein enzymes than to the simpler bacterial RNase P. Mechanistic similarity or dissimilarity among different forms of RNase P thus apparently do not necessarily reflect molecular composition or evolutionary relationship.
RNase P is an essential tRNA-processing enzyme in all domains of life. We identified an unknown type of protein-only RNase P in the hyperthermophilic bacterium Aquifex aeolicus: Without an RNA subunit and the smallest of its kind, the 23-kDa polypeptide comprises a metallonuclease domain only. The protein has RNase P activity in vitro and rescued the growth of Escherichia coli and Saccharomyces cerevisiae strains with inactivations of their more complex and larger endogenous ribonucleoprotein RNase P. Homologs of Aquifex RNase P (HARP) were identified in many Archaea and some Bacteria, of which all Archaea and most Bacteria also encode an RNA-based RNase P; activity of both RNase P forms from the same bacterium or archaeon could be verified in two selected cases. Bioinformatic analyses suggest that A. aeolicus and related Aquificaceae likely acquired HARP by horizontal gene transfer from an archaeon.protein-only RNase P | Aquifex aeolicus | tRNA processing | HARP T he architectural diversity of RNase P enzymes is unique: In Bacteria, Archaea, and in the nuclei and organelles of many Eukarya, RNase P is a complex consisting of a catalytic RNA subunit and a varying number of proteins (one in Bacteria, at least four in Archaea, and up to 10 in Eukarya) (1, 2). A different type of RNase P was discovered more recently in human mitochondria (3) and, subsequently, in land plants and some protists (4, 5). This form, termed proteinaceous or protein-only RNase P (PRORP), lacks any RNA subunit and consists of one or three (animal mitochondria) protein subunit(s); it is found in most branches of the eukaryotic phylogenetic tree (6).Bacterial RNase P enzymes identified so far are composed of a ∼400-nt-long catalytic RNA subunit (encoded by rnpB) and a small protein subunit of ∼14 kDa (encoded by rnpA) (7). However, no rnpA and rnpB genes were identified in the genome of Aquifex aeolicus or other Aquificaceae (8-12). The genetic organization of A. aeolicus tRNAs in tandem clusters and as part of ribosomal operons and the detection of tRNAs with canonical mature 5′-ends in total RNA extracts from A. aeolicus implied the existence of a tRNA 5′-maturation activity (9) that was indeed subsequently detected in cell lysates of A. aeolicus (11, 13). However, to date, the identity and biochemical composition of RNase P in A. aeolicus has remained enigmatic. Results and DiscussionHere, we pursued a classical biochemical approach to identify the RNase P of A. aeolicus. The purification procedure consisted of three consecutive chromatographic steps: anion exchange, hydrophobic interaction, and size exclusion chromatography (AEC, HIC, and SEC, respectively; Fig. 1A and SI Appendix, Figs. S1-S8). RNase P activity was assayed at all purification steps. To identify putative protein components of the enzyme, fractions with low and high RNase P activity from different purification steps were comparatively analyzed by step-gradient SDS/PAGE, and protein bands correlating with activity (Fig. 1B) were subjected to mass spectrometry. An example i...
In Arabidopsis thaliana, RNase P function, that is, endonucleolytic tRNA 5'-end maturation, is carried out by three homologous polypeptides ("proteinaceous RNase P" (PRORP) 1, 2 and 3). Here we present the first kinetic analysis of these enzymes. For PRORP1, a specificity constant (k(react)/K(m(sto))) of 3×10(6) M(-1) min(-1) was determined under single-turnover conditions. We demonstrate a fundamentally different sensitivity of PRORP enzymes to an Rp-phosphorothioate modification at the canonical cleavage site in a 5'-precursor tRNA substrate; whereas processing by bacterial RNase P is inhibited by three orders of magnitude in the presence of this sulfur substitution and Mg(2+) as the metal-ion cofactor, the PRORP enzymes are affected by not more than a factor of five under the same conditions, without significantly increased miscleavage. These findings indicate that the catalytic mechanism utilized by proteinaceous RNase P is different from that of RNA-based bacterial RNase P, taking place without a direct metal-ion coordination to the (pro-)Rp substituent. As Rp-phosphorothioate and inosine modification at all 26 G residues of the tRNA body had only minor effects on processing by PRORP, we conclude that productive PRORP-substrate interaction is not critically dependent on any of the affected (pro-)Rp oxygens or guanosine 2-amino groups.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.