The innate inflammatory immune response must be tightly controlled to avoid damage to the host. Here, we showed that the tuberous sclerosis complex-mammalian target of rapamycin (TSC-mTOR) pathway regulated inflammatory responses after bacterial stimulation in monocytes, macrophages, and primary dendritic cells. Inhibition of mTOR by rapamycin promoted production of proinflammatory cytokines via the transcription factor NF-kappaB but blocked the release of interleukin-10 via the transcription factor STAT3. Conversely, deletion of TSC2, the key negative regulator of mTOR, diminished NF-kappaB but enhanced STAT3 activity and reversed this proinflammatory cytokine shift. Rapamycin-hyperactivated monocytes displayed a strong T helper 1 (Th1) cell- and Th17 cell-polarizing potency. Inhibition of mTOR in vivo regulated the inflammatory response and protected genetically susceptible mice against lethal Listeria monocytogenes infection. These data identify the TSC2-mTOR pathway as a key regulator of innate immune homeostasis with broad clinical implications for infectious and autoimmune diseases, vaccination, cancer, and transplantation.
The innate immune system is central for the maintenance of tissue homeostasis and quickly responds to local or systemic perturbations by pathogenic or sterile insults. This rapid response must be metabolically supported to allow cell migration and proliferation and to enable efficient production of cytokines and lipid mediators. This Review focuses on the role of mammalian target of rapamycin (mTOR) in controlling and shaping the effector responses of innate immune cells. mTOR reconfigures cellular metabolism and regulates translation, cytokine responses, antigen presentation, macrophage polarization and cell migration. The mTOR network emerges as an integrative rheostat that couples cellular activation to the environmental and intracellular nutritional status to dictate and optimize the inflammatory response. A detailed understanding of how mTOR metabolically coordinates effector responses by myeloid cells will provide important insights into immunity in health and disease.
Three-dimensional (3D) cancer models are used as preclinical systems to mimic physiologic drug responses. We provide evidence for strong changes of proliferation and metabolic capacity in three dimensions by systematically analyzing spheroids of colon cancer cell lines. Spheroids showed relative lower activities in the AKT, mammalian target of rapamycin (mTOR) and S6K (also known as RPS6KB1) signaling pathway compared to cells cultured in two dimensions. We identified spatial alterations in signaling, as the level of phosphorylated RPS6 decreased from the spheroid surface towards the center, which closely coordinated with the tumor areas around vessels in vivo. These 3D models displayed augmented antitumor responses to AKT-mTOR-S6K or mitogen-activated protein kinase (MAPK) pathway inhibition compared to those in 2D models. Inhibition of AKT-mTOR-S6K resulted in elevated ERK phosphorylation in 2D culture, whereas under these conditions, ERK signaling was reduced in spheroids. Inhibition of MEK1 (also known as MAP2K1) led to decreased AKT-mTOR-S6K signaling in 3D but not in 2D culture. These data indicate a distinct rewiring of signaling in 3D culture and during treatment. Detached tumor-cell clusters in vessels, in addition to circulating single tumor cells, play a putative role in metastasis in human cancers. Hence, the understanding of signaling in spheroids and the responses in the 3D models upon drug treatment might be beneficial for anti-cancer therapies.
The results presented here suggest that human amniotic fluid may represent a new source for the isolation of human Oct-4-positive stem cells without raising the ethical concerns associated with human embryonic research.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.