With the prospect of extremely fast manufacture of very low cost devices, organic electronics prepared by thin film processing techniques that are compatible with roll-toroll (R2R) methods are presently receiving an increasing interest. Several technologies using organic thin films are at the point, where transfer from the laboratory to a more production-oriented environment is within reach. In this review, we aim at giving an overview of some of the R2R-compatible techniques that can be used in such a transfer, as well the current status of R2R application within some of the existing research fields such as organic photovoltaics, organic thin film transistors, light-emitting diodes, polymer electrolyte membrane fuel cells, and electrochromic devices.
A solar park based on polymer solar cells is described and analyzed with respect to performance, practicality, installation speed, and energy payback time. It is found that a high voltage installation where solar cells are all printed in series enables an installation rate in Watts installed per minute that far exceed any other PV technology in existence. The energy payback time for the practical installation of polymer solar cell foil on a wooden 250 square meter platform in its present form is 277 days when operated in Denmark and 180 days when operated in southern Spain. The installation and de-installation rate is above 100 m min⁻¹, which, with the present performance and web width, implies installation of >200 W min⁻¹. In comparison, this also exceeds the overall manufacturing speed of the polymer solar cell foil with a width of 305 mm which is currently 1 m min⁻¹ for complete encapsulated and tested foil. It is also significant that simultaneous installation and de-installation which enables efficient schemes for decommissioning and recycling is possible. It is highlighted where research efforts should most rationally be invested in order to make grid electricity from OPV a reality (and it is within reach).
The field of organic electrochromics is reviewed here, with particular focus on how the “electrochromic” as a functional material can be brought from the current level of accurate laboratory synthesis and characterization to the device and application level through a number of suited roll‐to‐roll methods compatible with upscaling and manufacture. The successful approaches to operational devices are presented in detail, as well as areas where future research would have a high impact and accelerate the development such as highly conducting and transparent substrates, electrolytes adapted for multilayer application and morphologically stable conjugated polymers.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.