A scaling effort on perovskite solar cells is presented where the device manufacture is progressed onto flexible substrates using scalable techniques such as slot‐die roll coating under ambient conditions. The printing of the back electrode using both carbon and silver is essential to the scaling effort. Both normal and inverted device geometries are explored and it is found that the formation of the correct morphology for the perovskite layer depends heavily on the surface upon which it is coated and this has significant implications for manufacture. The time it takes to form the desired layer morphology falls in the range of 5–45 min depending on the perovskite precursor, where the former timescale is compatible with mass production and the latter is best suited for laboratory work. A significant loss in solar cell performance of around 50% is found when progressing to using a fully scalable fabrication process, which is comparable to what is observed for other printable solar cell technologies such as polymer solar cells. The power conversion efficiency (PCE) for devices processed using spin coating on indium tin oxide (ITO)‐glass with evaporated back electrode yields a PCE of 9.4%. The same device type and active area realized using slot‐die coating on flexible ITO‐polyethyleneterphthalate (PET) with a printed back electrode gives a PCE of 4.9%.
Small polymer solar cell modules that are manufactured without indium‐tin‐oxide using only roll‐to‐roll printing and coating techniques under ambient conditions enable facile integration into a simple demonstrator (for example a laser pointer). Semitransparent front electrode grid structures prepared by roll‐to‐roll inkjet printing in conjunction with photonic sintering enable preparation of complete modules on flexible substrates and subsequent integration of the modules into a laser pointer demonstrator.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.