Meniscal T1(rho) and T2 values correlate with clinical findings of OA and can be used to differentiate healthy subjects from patients with mild or severe OA.
The Atlantic Multidecadal Oscillation (AMO) significantly influences the climate of the surrounding continents and has previously been attributed to variations in the Atlantic Meridional Overturning Circulation. Recently, however, similar multidecadal variability was reported in climate models without ocean circulation variability. We analyze the relationship between turbulent heat fluxes and sea surface temperatures (SSTs) over the midlatitude North Atlantic in observations and coupled climate model simulations, both with and without ocean circulation variability. SST anomalies associated with the AMO are positively correlated with heat fluxes on decadal time scales in both observations and models with varying ocean circulation, whereas in models without ocean circulation variability the anomalies are negatively correlated when heat flux anomalies lead. These relationships are captured in a simple stochastic model and rely crucially on low‐frequency forcing of SST. The fully coupled models that better capture this signature more effectively reproduce the observed impact of the AMO on European summertime temperatures.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.