In the present article we provide existence, uniqueness and stability results under an exponential moments condition for quadratic semimartingale backward stochastic differential equations (BSDEs) having convex generators. We show that the martingale part of the BSDE solution defines a true change of measure and provide an example which demonstrates that pointwise convergence of the drivers is not sufficient to guarantee a stability result within our framework.
This article studies the sensitivity of the power utility maximization problem with respect to the investor's relative risk aversion, the statistical probability measure, the investment constraints and the market price of risk. We extend previous descriptions of the dual domain then exploit the link between the constrained utility maximization problem and continuous semimartingale quadratic BSDEs to reduce questions on sensitivity to results on stability for such equations. This then allows us to prove appropriate convergence of the primal and dual optimizers in the semimartingale topology. * Corresponding author: n.westray@imperial.ac.uk AMS 2000 subject classifications: 60H30, 93D99, 91B28
This article studies quadratic semimartingale BSDEs arising in power utility maximization when the market price of risk is of BMO type. In a Brownian setting we provide a necessary and sufficient condition for the existence of a solution but show that uniqueness fails to hold in the sense that there exists a continuum of distinct square-integrable solutions. This feature occurs since, contrary to the classical Itô representation theorem, a representation of random variables in terms of stochastic exponentials is not unique. We study in detail when the BSDE has a bounded solution and derive a new dynamic exponential moments condition which is shown to be the minimal sufficient condition in a general filtration. The main results are complemented by several interesting examples which illustrate their sharpness as well as important properties of the utility maximization BSDE.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.