Cathodoluminescence (CL) and electron beam induced current (EBIC) measurements were used to investigate the optical behavior and electrical activity of grain boundaries (GBs) in coarsely grained silicon. Electron backscatter diffraction (EBSD) was applied for a comprehensive characterization of the structural properties of the high angle and low angle GBs (HAGBs and LAGBs) in the sample. It was found that not only the EBIC but also the panchromatic (pan) CL contrast of Σ3 HAGBs strongly depends on the hkl-type of the boundary plane. At room temperature coherent Σ3 GBs exhibit no significant contrast in the CL or EBIC images, whereas at low temperatures the pan-CL contrast is strong. For incoherent Σ3 GBs, a strong pan-CL and EBIC contrast was observed in the entire temperature range. Only on a LAGB (misorientation angle 4.5°) CL investigations at low temperatures revealed a line with peak position at about (0.82 ± 0.01) eV, usually related to the dislocation associated D1 transition. Cross-correlation EBSD was applied to analyze the strain fields of Σ3 HAGBs as well as of the LAGB. All the components of the local strain tensors were quantitatively determined. The relationship between the extension of the strain field at the LAGB and the spatial D1 intensity distribution is discussed.
The suitability of the deep level transient spectroscopy (DLTS) technique in exploring locations with high and degraded carrier lifetimes containing grain-boundaries (GBs) in multicrystalline silicon (mc-Si) wafers was studied. The types and locations of GBs were determined in mc-Si samples by electron backscatter diffraction. Mesa-type Schottky diodes were prepared at (along) GBs and at reference, GB-free locations. Detected DLTS signals varied strongly along the same GB. Experiments with dislocation networks, model structures for GBs, showed that GB-related traps may be explored only using special arrangement of a GB and the diode contacts. Iron-related carrier traps were detected in locations with degraded carrier lifetimes. Densities of the traps for near-GB and for GB free locations were compared to the lifetime measurement results.
Extended defects such as dislocations and grain boundaries have a strong influence on the performance of microelectronic devices and on other applications of semiconductor materials. However, it is still under debate how the defect structure determines the band structure, and therefore, the recombination behavior of electron-hole pairs responsible for the optical and electrical properties of the extended defects. The present paper is a survey of procedures for the spatially resolved investigation of structural and of physical properties of extended defects in semiconductor materials with a scanning electron microscope (SEM). Representative examples are given for crystalline silicon. The luminescence behavior of extended defects can be investigated by cathodoluminescence (CL) measurements. They are particularly valuable because spectrally and spatially resolved information can be obtained simultaneously. For silicon, with an indirect electronic band structure, CL measurements should be carried out at low temperatures down to 5 K due to the low fraction of radiative recombination processes in comparison to non-radiative transitions at room temperature. For the study of the electrical properties of extended defects, the electron beam induced current (EBIC) technique can be applied. The EBIC image reflects the local distribution of defects due to the increased charge-carrier recombination in their vicinity. The procedure for EBIC investigations is described for measurements at room temperature and at low temperatures. Internal strain fields arising from extended defects can be determined quantitatively by cross-correlation electron backscatter diffraction (ccEBSD). This method is challenging because of the necessary preparation of the sample surface and because of the quality of the diffraction patterns which are recorded during the mapping of the sample. The spatial resolution of the three experimental techniques is compared.
Extended defects such as dislocations and grain boundaries have a strong influence on the performance of microelectronic devices and on other applications of semiconductor materials. However, it is still under debate how the defect structure determines the band structure, and therefore, the recombination behavior of electron-hole pairs responsible for the optical and electrical properties of the extended defects. The present paper is a survey of procedures for the spatially resolved investigation of structural and of physical properties of extended defects in semiconductor materials with a scanning electron microscope (SEM). Representative examples are given for crystalline silicon. The luminescence behavior of extended defects can be investigated by cathodoluminescence (CL) measurements. They are particularly valuable because spectrally and spatially resolved information can be obtained simultaneously. For silicon, with an indirect electronic band structure, CL measurements should be carried out at low temperatures down to 5 K due to the low fraction of radiative recombination processes in comparison to non-radiative transitions at room temperature. For the study of the electrical properties of extended defects, the electron beam induced current (EBIC) technique can be applied. The EBIC image reflects the local distribution of defects due to the increased charge-carrier recombination in their vicinity. The procedure for EBIC investigations is described for measurements at room temperature and at low temperatures. Internal strain fields arising from extended defects can be determined quantitatively by cross-correlation electron backscatter diffraction (ccEBSD). This method is challenging because of the necessary preparation of the sample surface and because of the quality of the diffraction patterns which are recorded during the mapping of the sample. The spatial resolution of the three experimental techniques is compared.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.