Adaptive optics (AO) systems for ground-based telescopes use deformable mirrors to physically correct wavefront distortions induced by atmospheric turbulence. Due to time delays caused by different parts of the AO system, the process of turbulence correction becomes even more difficult since the earth’s atmosphere changes continuously. In this paper we propose a new temporal control approach for the computation of optimal mirror configurations based on the solution of a sequence of inverse problems for the wavefront sensor operator. Our mathematical formulation of the underlying problem allows the incorporation of computationally efficient wavefront reconstruction methods and a wavefront prediction step. Based on the frozen flow assumption, the prediction of a future wavefront relies on a suitable shift of the reconstructed wavefront. The performance of our temporal control algorithm is demonstrated in the context of a single conjugate adaptive optics system on a 37 meter telescope using a Shack–Hartmann wavefront sensor. Numerical results of the proposed control method are provided using OCTOPUS, the official end-to-end simulation tool of the European Southern Observatory.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.