In this paper, we consider nonlinear inverse problems where the solution is assumed to have a sparse expansion with respect to a preassigned basis or frame. We develop a scheme which allows to minimize a Tikhonov functional where the usual quadratic regularization term is replaced by a one-homogeneous (typically weighted p ) penalty on the coefficients (or isometrically transformed coefficients) of such expansions. For p < 2, the regularized solution will have a sparser expansion with respect to the basis or frame under consideration. The computation of the regularized solution amounts in our setting to a Landweber-fixed-point iteration with a projection applied in each fixed-point iteration step. The performance of the resulting numerical scheme is demonstrated by solving the nonlinear inverse single photon emission computerized tomography (SPECT) problem.
In this paper we deal with Morozov's discrepancy principle as an aposteriori parameter choice rule for Tikhonov regularization with general convex penalty terms Ψ for non-linear inverse problems. It is shown that a regularization parameter α fulfilling the discprepancy principle exists, whenever the operator F satisfies some basic conditions, and that for this parameter choice rule holds α → 0, δ q /α → 0 as the noise level δ goes to 0. It is illustrated that for suitable penalty terms this yields convergence of the regularized solutions to the true solution in the topology induced by Ψ. Finally, we establish convergence rates with respect to the generalized Bregman distance and a numerical example is presented.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.