In this paper, we study the relationships of the newly developed continuous shearlet transform with the coorbit space theory. It turns out that all the conditions that are needed to apply the coorbit space theory can indeed be satisfied for the shearlet group. Consequently, we establish new families of smoothness spaces, the shearlet coorbit spaces. Moreover, our approach yields Banach frames for these spaces in a quite natural way. We also study the approximation power of best n-term approximation schemes and present some first numerical experiments.
In this paper, we consider nonlinear inverse problems where the solution is assumed to have a sparse expansion with respect to a preassigned basis or frame. We develop a scheme which allows to minimize a Tikhonov functional where the usual quadratic regularization term is replaced by a one-homogeneous (typically weighted p ) penalty on the coefficients (or isometrically transformed coefficients) of such expansions. For p < 2, the regularized solution will have a sparser expansion with respect to the basis or frame under consideration. The computation of the regularized solution amounts in our setting to a Landweber-fixed-point iteration with a projection applied in each fixed-point iteration step. The performance of the resulting numerical scheme is demonstrated by solving the nonlinear inverse single photon emission computerized tomography (SPECT) problem.
Abstract:This note is concerned with the generalization of the continuous shearlet transform to higher dimensions. Similar to the two-dimensional case, our approach is based on translations, anisotropic dilations and specific shear matrices. We show that the associated integral transform again originates from a square-integrable representation of a specific group, the full n-variate shearlet group. Moreover, we verify that by applying the coorbit theory, canonical scales of smoothness spaces and associated Banach frames can be derived. We also indicate how our transform can be used to characterize singularities in signals.
Finding optimal representations of signals in higher dimensions, in particular directional representations, is currently the subject of intensive research. Since the classical wavelet transform does not provide precise directional information in the sense of resolving the wavefront set, several new representation systems were proposed in the past, including ridgelets, curvelets and, more recently, Shearlets. In this paper we study and visualize the continuous Shearlet transform. Moreover, we aim at deriving mother Shearlet functions which ensure optimal accuracy of the parameters of the associated transform. For this, we first show that this transform is associated with a unitary group representation coming from the so-called Shearlet group and compute the associated admissibility condition. This enables us to employ the general uncertainty principle in order to derive mother Shearlet functions that minimize the uncertainty relations derived for the infinitesimal generators of the Shearlet group: scaling, shear and translations. We further discuss methods to ensure square-integrability of the derived minimizers by considering weighted L2-spaces. Moreover, we study whether the minimizers satisfy the admissibility condition, thereby proposing a method to balance between the minimizing and the admissibility property.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.