This minireview is aimed at giving an overview of recent advances in olefin functionalisation reactions involving aryl radicals generated from arenediazonium salts. Based on the well-known Meerwein arylation, in which an aryl and a halogen substituent are coupled to an olefinic substrate, new reaction types have been developed that allow the introduction of a broad spectrum of other atoms and functional groups at the place of the original halogen atom and that are applicable to an extended range of olefinic substrates.
SignificanceThe development of selective antagonists for muscarinic acetylcholine receptors is challenging due to high homology in orthosteric binding sites among subtypes. Starting from a single amino acid difference in the orthosteric pockets in M2 muscarinic acetylcholine receptor (M2R) and M3R, we developed an M3R-selective antagonist using molecular docking and structure-based design. The resulting M3R antagonist showed up to 100-fold selectivity over the M2R in affinity and 1,000-fold selectivity in vivo. The docking-predicted geometry was further confirmed by a 3.1 Å crystal structure of M3R in complex with the selective antagonist. The potential of structure-based design to develop selective drugs with reduced off-target effects is supported by this study.
Introduction of [(18) F]fluoride ion into the aromatic core of phenylazocarboxylic esters was achieved in only 30 seconds, with radiochemical yields of up to 95 % (85(±10) %). For labeling purposes, the resulting (18) F-substituted azoester can be further converted in radical-arylation reactions to give biaryls, or in substitutions at its carbonyl unit to produce azocarboxamides.
The radical carbohydroxylation of styrenes with aryldiazonium salts has been achieved under mild thermal conditions. A broad range of aryldiazonium salts was tolerated, and the reaction principle based on a radical–polar crossover mechanism could be extended to carboetherification as well as to a two‐step, metal‐free variant of the Meerwein arylation leading to stilbenes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.