Ferroptosis is an iron-dependent form of necrotic cell death marked by oxidative damage to phospholipids 1,2. To date, ferroptosis has been believed to be restrained only by the phospholipid hydroperoxide (PLOOH)-reducing enzyme glutathione peroxidase 4 (GPX4) 3,4 and radicaltrapping antioxidants (RTAs) 5,6. The factors which underlie a given cell type's sensitivity to ferroptosis 7 is, however, critical to understand the pathophysiological role of ferroptosis and how it may be exploited for cancer treatment. Although metabolic constraints 8 and phospholipid composition 9,10 contribute to ferroptosis sensitivity, no cell-autonomous mechanisms have been yet been identified that account for ferroptosis resistance. We undertook an expression cloning approach to identify genes able to complement GPX4 loss. These efforts uncovered the flavoprotein "apoptosis inducing factor mitochondria-associated 2 (AIFM2)" as a previously unrecognized anti-ferroptotic gene. AIFM2, hereafter renamed "ferroptosis-suppressor-protein 1" (FSP1), initially described as a pro-apoptotic gene 11 , confers an unprecedented protection against ferroptosis elicited by GPX4 deletion. We further demonstrate that ferroptosis suppression by FSP1 is mediated via ubiquinone (CoQ10): its reduced form ubiquinol traps lipid peroxyl radicals that mediate lipid peroxidation, while FSP1 catalyses its regeneration by using NAD(P)H. Pharmacological targeting of FSP1 strongly synergizes with GPX4 inhibitors to trigger ferroptosis in a number of cancer entities. Conclusively, FSP1/CoQ10/NAD(P)H exists as a standalone parallel system, which cooperates with GPX4 and glutathione (GSH) to suppress phospholipid peroxidation (pLPO) and ferroptosis. program NEUROPROTEKT (03VP04260), as well as the m4 Award provided by the Bavarian Ministry of Economic Affairs, Regional Development and Energy (StMWi) to M.C., the Cancer Research UK
Intermolecular static and dynamic fluorescence quenching constants of eight coumarin derivatives by nucleobase derivatives have been determined in aqueous media. One common sequence of the quenching efficiency has been found for the nucleobases. The feasibility of a photoinduced electron transfer reaction for the nucleobase-specific quenching of fluorescent dyes is investigated by the calculation of the standard free energy changes with the Rehm−Weller equation. A complete set of one-electron redox potential data for the nucleobases are determined electrochemically in aprotic solvents for the first time, which are compared with values obtained by various other methods. Depending on the redox properties of the fluorescent dyes, the sequences of the quenching efficiencies can be rationalized by the orders of electrochemical oxidation potentials (vs NHE) of nucleosides (dG (+1.47 V) < dA < dC ≈ dT < U (≥ +2.39 V)) and reduction potentials (dG (< −2.76 V) < dA < dC < dT < U (−2.07 V)). The correlation between the intermolecular dynamic quenching constants and the standard free energy of photoinduced electron transfer according to the classical Marcus equation indicates that photoinduced electron transfer is the rate-limiting step. However, an additional, water-specific gain of free energy between −0.5 and −0.9 eV shows that additional effects, like a coupled proton transfer and a hydrophobic effect, have to be considered, too. Furthermore, the capability of the nucleobases to form ground state complexes with fluorescent dyes is influenced by their redox potentials. The relevance of these observations to current efforts for DNA sequencing with a detection by laser-induced fluorescence and their application to other dyes are discussed.
Super-resolution microscopy (SRM) bypasses the diffraction limit, a physical barrier that restricts the optical resolution to roughly 250 nm and was previously thought to be impenetrable. SRM techniques allow the visualization of subcellular organization with unprecedented detail, but also confront biologists with the challenge of selecting the best-suited approach for their particular research question. Here, we provide guidance on how to use SRM techniques advantageously for investigating cellular structures and dynamics to promote new discoveries.
The attribution of a protein to an ultrastructural element by optical microscopy represents a major challenge in biology. Here, we report a method of near-native expansion microscopy (U-ExM), enabling the visualization of preserved ultrastructures of macromolecules by optical microscopy. Combined with super-resolution, U-ExM unveiled the centriolar chirality, only visualizable by electron microscopy. We demonstrate the general applicability of U-ExM by imaging different cellular structures including microtubules and mitochondria in cellulo .
Super-resolution fluorescence imaging by photoactivation or photoswitching of single fluorophores and position determination (single-molecule localization microscopy, SMLM) provides microscopic images with subdiffraction spatial resolution. This technology has enabled new insights into how proteins are organized in a cellular context, with a spatial resolution approaching virtually the molecular level. A unique strength of SMLM is that it delivers molecule-resolved information, along with super-resolved images of cellular structures. This allows quantitative access to cellular structures, for example, how proteins are distributed and organized and how they interact with other biomolecules. Ultimately, it is even possible to determine protein numbers in cells and the number of subunits in a protein complex. SMLM thus has the potential to pave the way toward a better understanding of how cells function at the molecular level. In this review, we describe how SMLM has contributed new knowledge in eukaryotic biology, and we specifically focus on quantitative biological data extracted from SMLM images.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.