Objective Since the first introduction of the MOCART (Magnetic Resonance Observation of Cartilage Repair Tissue) score, significant progress has been made with regard to surgical treatment options for cartilage defects, as well as magnetic resonance imaging (MRI) of such defects. Thus, the aim of this study was to introduce the MOCART 2.0 knee score — an incremental update on the original MOCART score — that incorporates this progression. Materials and Methods The volume of cartilage defect filling is now assessed in 25% increments, with hypertrophic filling of up to 150% receiving the same scoring as complete repair. Integration now assesses only the integration to neighboring native cartilage, and the severity of surface irregularities is assessed in reference to cartilage repair length rather than depth. The signal intensity of the repair tissue differentiates normal signal, minor abnormal, or severely abnormal signal alterations. The assessment of the variables “subchondral lamina,” “adhesions,” and “synovitis” was removed and the points were reallocated to the new variable “bony defect or bony overgrowth.” The variable “subchondral bone” was renamed to “subchondral changes” and assesses minor and severe edema-like marrow signal, as well as subchondral cysts or osteonecrosis-like signal. Overall, a MOCART 2.0 knee score ranging from 0 to 100 points may be reached. Four independent readers (two expert readers and two radiology residents with limited experience) assessed the 3 T MRI examinations of 24 patients, who had undergone cartilage repair of a femoral cartilage defect using the new MOCART 2.0 knee score. One of the expert readers and both inexperienced readers performed two readings, separated by a four-week interval. For the inexperienced readers, the first reading was based on the evaluation sheet only. For the second reading, a newly introduced atlas was used as an additional reference. Intrarater and interrater reliability was assessed using intraclass correlation coefficients (ICCs) and weighted kappa statistics. ICCs were interpreted according to Koo and Li; weighted kappa statistics were interpreted according to the criteria of Landis and Koch. Results The overall intrarater (ICC = 0.88, P < 0.001) as well as the interrater (ICC = 0.84, P < 0.001) reliability of the expert readers was almost perfect. Based on the evaluation sheet of the MOCART 2.0 knee score, the overall interrater reliability of the inexperienced readers was poor (ICC = 0.34, P < 0.019) and improved to moderate (ICC = 0.59, P = 0.001) with the use of the atlas. Conclusions The MOCART 2.0 knee score was updated to account for changes in the past decade and demonstrates almost perfect interrater and intrarater reliability in expert readers. In inexperienced readers, use of the atlas may improve interrater reliability and, thus, increase the comparability of results across studies.
Sodium magnetic resonance imaging ( 23 Na-MRI) is a highly promising imaging modality that offers the possibility to noninvasively quantify sodium content in the tissue, one of the most relevant parameters for biochemical investigations. Despite its great potential, due to the intrinsically low signal-to-noise ratio (SNR) of sodium imaging generated by low in vivo sodium concentrations, low gyromagnetic ratio, and substantially shorter relaxation times than for proton ( 1 H) imaging, 23 Na-MRI is extremely challenging. In this article, we aim to provide a comprehensive overview of the literature that has been published in the last 10-15 years and which has demonstrated different technical designs for a range of 23 Na-MRI methods applicable for disease diagnoses and treatment efficacy evaluations. Currently, a wider use of 3.0T and 7.0T systems provide imaging with the expected increase in SNR and, consequently, an increased image resolution and a reduced scanning time. A great interest in translational research has enlarged the field of sodium MRI applications to almost all parts of the body: articular cartilage tendons, spine, heart, breast, muscle, kidney, and brain, etc., and several pathological conditions, such as tumors, neurological and degenerative diseases, and others. The quantitative parameter, tissue sodium concentration, which reflects changes in intracellular sodium concentration, extracellular sodium concentration, and intra-/extracellular volume fractions is becoming acknowledged as a reliable biomarker. Although the great potential of this technique is evident, there must be steady technical development for 23 Na-MRI to become a standard imaging tool. The future role of sodium imaging is not to be considered as an alternative to 1 H MRI, but to provide early, diagnostically valuable information about altered metabolism or tissue function associated with disease genesis and progression. Level of Evidence: 1 Technical Efficacy Stage: 1
BackgroundSubstantial bone loss following failed total knee arthroplasty (TKA) represents a major challenge in revision arthroplasty, that can require distal femoral reconstruction (DFR). In this study, we aimed to assess the clinical outcome and the complication frequencies of individuals who underwent DFR with modular megaprostheses. Additionally, we aimed to compare functional outcome measures after DFR in these sophisticated cases to an age-matched control group of total knee prostheses to quantify the potential loss of function.MethodsA retrospective chart review of 30 consecutive patients after DFR from 1997 to 2017 with a mean age of 74.38 years (± 10.1) was performed. Complications were classified according to the Henderson classification. Knee Society Score (KSS) was calculated and range of motion (ROM) was assessed.ResultsThirteen (43.3%) patients had at least one complication requiring revision surgery. Revision-free survival was 74.8% at one year, 62.5% at three and 40.9% at 10 years post-op. Soft-tissue failure complications were found in three (10.0%) patients, aseptic loosening in four (13.3%) patients, structural failure in one (3.3%) patient and infection in eight (26.6%) patients. Of those with infection, five (16.6%) experienced ongoing prosthetic joint infection and three (10.0%) developed new infection after distal femur reconstruction. Patients with DFR achieved 69.3% of KSS pain score, 23.1% KSS function score and 76.2% of ROM compared to patients with primary TKA.ConclusionsDFR after failed TKA represents a treatment procedure with high risk for complication in this particular group. Despite the prospect of rapid postoperative mobilization, reduced functionality, range of motion and mobilization have to be considered when choosing this treatment option.
Osteochondral repair by implanting the MaioRegen® scaffold provides a successful osteoconduction and filling of the cartilage defect. However there is evidence for a limited repair cartilage tissue quality at 18 months after the surgery.
Megaprostheses represent a valuable option in distal femoral PPFs type 3 according to Su et al., as well as proximal tibia PPFs type 1B according to Felix et al., with loose tibial components. Infection remains the most frequent nonmechanical complication. Prospective clinical studies are required to exactly define the outcome of this technique in PPFs; use of the Henderson classification system would allow comparison between megaprostheses in oncological and nononcological indications.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.