The upper Paleocene to lower Eocene Margaret Formation exposed at Stenkul Fiord on southern Ellesmere Island, Nunavut, Canada, represents a nearly continuous terrestrial succession of microfossilrich clastic sediments and coal. These strata were deposited at a time of extensive tectonic activity associated with Eurekan deformation. The precise chronology of the Eurekan deformation is poorly known. Prior studies at Stenkul Fiord provided a stratigraphic overview and relative age estimates for exposed strata but lack the absolute age control required to investigate the timing of deformation events. Strata at Stenkul Fiord preserve evidence of Arctic forests that may have grown during hyperthermal events that characterized the Paleogene, namely, the Paleocene-Eocene Thermal Maximum (PETM) and Eocene Thermal Maximum 2 (ETM2). A quantitative palynological approach is herein used to define a new higher-resolution biostratigraphic framework for the Margaret Formation strata at Stenkul Fiord. This resulting improved biostratigraphic framework is integrated with new absolute age control of 53.7 ± 0.06 Ma provided by U-Pb ID-TIMS of zircon preserved in an ash bed within the studied succession. Nine pollen zones are defined based on cluster analysis, NMDS ordination, firstand last occurrences of taxa, and angiosperm pollen taxa diversity (H 0 ). The presence of thermophilic pollen taxa at Stenkul Fiord provides evidence of climates related to the globally warm climates during the early Paleogene.
During the late Paleocene to early Eocene, clastic fluvial sediments and coals were deposited in northern high latitudes as part of the Margaret Formation at Stenkul Fiord (Ellesmere Island, Nunavut, Canada). Syn-sedimentary tectonic movements of the Eurekan deformation continuously affected these terrestrial sediments. Different volcanic ash layers occur, and unconformities subdivide the deposits into four sedimentary units. Rare vertebrate fossils indicate an early Eocene (Graybullian) age for the upper part of the Stenkul Fiord outcrop.
Here, we present carbon isotope data of bulk coal, related organic-rich mud and siltstones, a plant leaf wax-derived alkane, and additional plant remains. These data provide a complete carbon isotope record of one stratigraphic section with defined unconformity positions and in relation to other Eurekan deformation features. A previously dated ash layer MA-1 provided a U-Pb zircon age of 53.7 Ma and is used as a stratigraphic tie point, together with a discrete negative carbon isotope excursion found above MA-1 in a closely sampled coal seam. The excursion is identified as the likely expression of the I-1 hyperthermal event.
Based on our isotope data that reflect the early Eocene dynamics of the carbon cycle, this tie point, and previous paleontological constraints from vertebrate fossils, the locations of the Paleocene-Eocene Thermal Maximum (PETM) and Eocene Thermal Maximum 2 (ETM-2) hyperthermals and their extent along the complete section are herein identified. Within the intervals of the PETM and ETM-2 hyperthermal events, increasing amounts of clastic sediments reached the site toward the respective end of the event. This is interpreted as a response of the fluvial depositional system to an intensified hydrological system during the hyperthermal events. Our study establishes an enhanced stratigraphic framework allowing for the calculation of average sedimentation rates of different intervals and considerations on the completeness of the stratigraphic record.
As one of the few high-latitude outcrops of early Eocene terrestrial sediments, the Stenkul Fiord location offers further possibilities to study the effects of extreme warming events in the Paleogene.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.