No abstract
Abstract-In cooperative multiagent systems, agents interact to solve tasks. Global dynamics of multiagent teams result from local agent interactions, and are complex and difficult to predict. Evolutionary computation has proven a promising approach to the design of such teams. The majority of current studies use teams composed of agents with identical control rules ("genetically homogeneous teams") and select behavior at the team level ("team-level selection"). Here we extend current approaches to include four combinations of genetic team composition and level of selection. We compare the performance of genetically homogeneous teams evolved with individual-level selection, genetically homogeneous teams evolved with team-level selection, genetically heterogeneous teams evolved with individual-level selection, and genetically heterogeneous teams evolved with team-level selection. We use a simulated foraging task to show that the optimal combination depends on the amount of cooperation required by the task. Accordingly, we distinguish between three types of cooperative tasks and suggest guidelines for the optimal choice of genetic team composition and level of selection.
Abstract-In this paper we present the design and implementation of Rapyuta1 , an open source cloud robotics platform. Rapyuta helps robots to offload heavy computation by providing secured customizable computing environments in the cloud. The computing environments also allow the robots to easily access the RoboEarth knowledge repository. Furthermore, these computing environments are tightly interconnected, paving the way for deployment of robotic teams. We also describe three typical use cases, some benchmarking and performance results, and two proof-of-concept demonstrations.Note to Practitioners-Rapyuta allows to outsource some or all of a robot's onboard computational processes to a commercial data center. Its main difference to other, similar frameworks like the Google App Engine is that it is specifically tailored towards multi-process high-bandwidth robotics applications/middlewares and provides a well documented open source implementation that can be modified to cover a large variety of robotic scenarios. Rapyuta supports the outsourcing of almost all of the current 3000+ ROS packages out of the box and is easily extensible to other robotic middleware. A pre-installed Amazon Machine Image (AMI) is provided that allows to launch Rapyuta in any of Amazon's data center within minutes. Once launched, robots can authenticate themselves to Rapyuta, create one or more secured computational environments in the cloud, and launch the desired nodes/processes. The computing environments can also be arbitrarily connected to build parallel computing architectures on the fly. The WebSocket-based communication protocol, which provides synchronous and asynchronous communication mechanisms, allows not only ROS based robots, but also browsers and mobiles phones to connect to the ecosystem. Rapyuta's computing environments are private, secure, and optimized for data throughput. However, its performance is in large part determined by the latency and quality of the network connection and the performance of the data center. Optimizing performance under these constraints is typically highly application specific. The paper illustrates an example of performance optimization in a collaborative real-time 3D mapping application. Other target applications include collaborative 3D mapping, task/grasp planning, object recognition, localization, and teleoperation, among others.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.