Study Design An automatic radiographic labelling algorithm called “LevelCheck” was analyzed as a means of decision support for target localization in spine surgery. The potential clinical utility and scenarios in which LevelCheck is likely to be the most beneficial were assessed in a retrospective clinical data set (398 cases) in terms of expert consensus from a multi-reader study (3 spine surgeons). Objective To evaluate the potential utility of the LevelCheck algorithm for vertebrae localization. Summary of Background Data 398 intraoperative radiographs and 178 preoperative CT images for patients undergoing spine surgery in cervical, thoracic, lumbar regions. Methods Vertebral labels annotated in preoperative CT image were overlaid on intraoperative radiographs via 3D-2D registration. 3 spine surgeons assessed the radiographs and LevelCheck labeling according to a questionnaire evaluating performance, utility, and suitability to surgical workflow. Geometric accuracy and registration run time were measured for each case. Results LevelCheck was judged to be helpful in 42.2% of the cases (168/398), to improve confidence in 30.6% of the cases (122/398), and in no case diminished performance (0/398), supporting its potential as an independent check and assistant to decision support in spine surgery. The clinical contexts for which the method was judged most likely to be beneficial included the following scenarios: images with lack of conspicuous anatomical landmarks; level counting across long spine segments; vertebrae obscured by other anatomy (e.g., shoulders); poor radiographic image quality; and anatomical variations / abnormalities. The method demonstrated 100% geometric accuracy (i.e., overlaid labels within the correct vertebral level in all cases) and did not introduce ambiguity in image interpretation. Conclusion LevelCheck is a potentially useful means of decision support in vertebral level localization in spine surgery. Level of Evidence N/A
Purpose 3D acquisitions are often acquired to assess the result in orthopedic trauma surgery. With a mobile C-Arm system, these acquisitions can be performed intra-operatively. That reduces the number of required revision surgeries. However, due to the operation room setup, the acquisitions typically cannot be performed such that the acquired volumes are aligned to the anatomical regions. Thus, the multiplanar reconstructed (MPR) planes need to be adjusted manually during the review of the volume. In this paper, we present a detailed study of multi-task learning (MTL) regression networks to estimate the parameters of the MPR planes.Approach First, various mathematical descriptions for rotation, including Euler angle, quaternion, and matrix representation, are revised. Then, three different MTL network architectures based on the PoseNet are compared with a single task learning network.Results Using a matrix description rather than the Euler angle description, the accuracy of the regressed normals improves from 7.7 • to 7.3 • in the mean value for single anatomies. The multi-head approach improves the regression of the plane position from 7.4mm to 6.1mm, while the orientation does not benefit from this approach.Conclusions The results show that a multi-head approach can lead to slightly better results than the individual tasks networks. The most important benefit of the MTL approach is that it is a single network for standard plane regression for all body regions with a reduced number of stored parameters.
Our results show that our framework is expected to increase the accuracy in screw positioning and to improve robustness w.r.t. freehand placement.
. Purpose To assess the result in orthopedic trauma surgery, usually three-dimensional volume data of the treated region is acquired. With mobile C-arm systems, these acquisitions can be performed intraoperatively, reducing the number of required revision surgeries. However, the acquired volumes are typically not aligned to the anatomical regions. Thus, the multiplanar reconstructed (MPR) planes need to be adjusted manually during the review of the volume. To speed up and ease the workflow, an automatic parameterization of these planes is needed. Approach We present a detailed study of multitask learning (MTL) regression networks to estimate the parameters of the MPR planes. First, various mathematical descriptions for rotation, including Euler angle, quaternion, and matrix representation, are revised. Then, two different MTL network architectures based on the PoseNet are compared with a single task learning network. Results Using a matrix description rather than the Euler angle description, the accuracy of the regressed normals improves from 7.7 deg to 7.3 deg in the mean value for single anatomies. The multihead approach improves the regression of the plane position from 7.4 to 6.1 mm, whereas the orientation does not benefit from this approach. Thus, the achieved accuracy meets the reported interrater variance in similarly complex body regions of up to 6.3 deg for the normals and up to 9.3 mm for the plane position. Conclusions The use of a multihead approach with shared features leads to more accurate plane regression compared with the use of individual networks for each task. It also improves the angle estimation for the ankle region. The reported results are in the same range as manual plane adjustments. The use of a combined network with shared parameters requires less memory, which is a great benefit for the implementation of an application for the surgical environment.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.