Intraoperative localization of target anatomy and critical structures defined in preoperative MR/CT images can be achieved through the use of multimodality deformable registration. We propose a symmetric diffeomorphic deformable registration algorithm incorporating a modality-independent neighborhood descriptor (MIND) and a robust Huber metric for MR-to-CT registration. The method, called MIND Demons, finds a deformation field between two images by optimizing an energy functional that incorporates both the forward and inverse deformations, smoothness on the integrated velocity fields, a modality-insensitive similarity function suitable to multimodality images, and smoothness on the diffeomorphisms themselves. Direct optimization without relying on the exponential map and stationary velocity field approximation used in conventional diffeomorphic Demons is carried out using a Gauss-Newton method for fast convergence. Registration performance and sensitivity to registration parameters were analyzed in simulation, phantom experiments, and clinical studies emulating application in image-guided spine surgery, and results were compared to mutual information (MI) free-form deformation (FFD), local MI (LMI) FFD, normalized MI (NMI) Demons, and MIND with a diffusion-based registration method (MIND-elastic). The method yielded sub-voxel invertibility (0.008 mm) and nonzero-positive Jacobian determinants. It also showed improved registration accuracy in comparison to the reference methods, with mean target registration error (TRE) of 1.7 mm compared to 11.3, 3.1, 5.6, and 2.4 mm for MI FFD, LMI FFD, NMI Demons, and MIND-elastic methods, respectively. Validation in clinical studies demonstrated realistic deformations with sub-voxel TRE in cases of cervical, thoracic, and lumbar spine.
Purpose: To quantitatively analyze clinically relevant features on longitudinal multimodal imaging of late-onset retinal degeneration to characterize disease progression.Methods: Fundus autofluorescence (FAF), infrared reflectance, and optical coherence tomography imaging of 4 patients with late-onset retinal degeneration were acquired over 3 to 15 years (20 visits total). Corresponding regions of interest were analyzed on FAF (reticular pseudodrusen [RPD], "speckled FAF," and chorioretinal atrophy) and infrared reflectance (hyporeflective RPD and target RPD) using quantitative measurements, including contour area, distance to fovea, contour overlap, retinal thickness, and texture features.Results: Cross-sectional analysis revealed a moderate correlation (RPD FAF \ RPD infrared reflectance = 63%) between contour area across modalities. Quantification of retinal thickness and texture analysis of areas contoured on FAF objectively differentiated the contour types. A longitudinal analysis of aligned images demonstrates that the contoured region of atrophy both encroaches toward the fovea and grows monotonically with a rate of 0.531 mm/year to 1.969 mm/year (square root of area, n = 5 eyes). A retrospective analysis of precursor lesions of atrophy reveals quantifiable progression from RPD to speckled FAF to atrophy.Conclusion: Image analysis of time points before the development of atrophy reveals consistent patterns over time and space in late-onset retinal degeneration that may provide useful outcomes for this and other degenerative retinal diseases.
Registration to compensate for prostate motion during 3D TRUS-guided biopsy can be performed with a measured accuracy of less than 2 mm and a speed of 1.1 s, which is an important step toward improving the targeting accuracy of a 3D TRUS-guided biopsy system.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.