In image-guided spine surgery, robust three-dimensional to two-dimensional (3D–2D) registration of preoperative computed tomography (CT) and intraoperative radiographs can be challenged by the image content mismatch associated with the presence of surgical instrumentation and implants as well as soft-tissue resection or deformation. This work investigates image similarity metrics in 3D–2D registration offering improved robustness against mismatch, thereby improving performance and reducing or eliminating the need for manual masking. The performance of four gradient-based image similarity metrics (gradient information (GI), gradient correlation (GC), gradient information with linear scaling (GS), and gradient orientation (GO)) with a multi-start optimization strategy was evaluated in an institutional review board-approved retrospective clinical study using 51 preoperative CT images and 115 intraoperative mobile radiographs. Registrations were tested with and without polygonal masks as a function of the number of multistarts employed during optimization. Registration accuracy was evaluated in terms of the projection distance error (PDE) and assessment of failure modes (PDE > 30 mm) that could impede reliable vertebral level localization. With manual polygonal masking and 200 multistarts, the GC and GO metrics exhibited robust performance with 0% gross failures and median PDE < 6.4 mm (±4.4 mm interquartile range (IQR)) and a median runtime of 84 s (plus upwards of 1–2 min for manual masking). Excluding manual polygonal masks and decreasing the number of multistarts to 50 caused the GC-based registration to fail at a rate of >14%; however, GO maintained robustness with a 0% gross failure rate. Overall, the GI, GC, and GS metrics were susceptible to registration errors associated with content mismatch, but GO provided robust registration (median PDE = 5.5 mm, 2.6 mm IQR) without manual masking and with an improved runtime (29.3 s). The GO metric improved the registration accuracy and robustness in the presence of strong image content mismatch. This capability could offer valuable assistance and decision support in spine level localization in a manner consistent with clinical workflow.
Intraoperative localization of target anatomy and critical structures defined in preoperative MR/CT images can be achieved through the use of multimodality deformable registration. We propose a symmetric diffeomorphic deformable registration algorithm incorporating a modality-independent neighborhood descriptor (MIND) and a robust Huber metric for MR-to-CT registration. The method, called MIND Demons, finds a deformation field between two images by optimizing an energy functional that incorporates both the forward and inverse deformations, smoothness on the integrated velocity fields, a modality-insensitive similarity function suitable to multimodality images, and smoothness on the diffeomorphisms themselves. Direct optimization without relying on the exponential map and stationary velocity field approximation used in conventional diffeomorphic Demons is carried out using a Gauss-Newton method for fast convergence. Registration performance and sensitivity to registration parameters were analyzed in simulation, phantom experiments, and clinical studies emulating application in image-guided spine surgery, and results were compared to mutual information (MI) free-form deformation (FFD), local MI (LMI) FFD, normalized MI (NMI) Demons, and MIND with a diffusion-based registration method (MIND-elastic). The method yielded sub-voxel invertibility (0.008 mm) and nonzero-positive Jacobian determinants. It also showed improved registration accuracy in comparison to the reference methods, with mean target registration error (TRE) of 1.7 mm compared to 11.3, 3.1, 5.6, and 2.4 mm for MI FFD, LMI FFD, NMI Demons, and MIND-elastic methods, respectively. Validation in clinical studies demonstrated realistic deformations with sub-voxel TRE in cases of cervical, thoracic, and lumbar spine.
Spinal screw placement is a challenging task due to small bone corridors and high risk of neurological or vascular complications, benefiting from precision guidance/navigation and quality assurance (QA). Implicit to both guidance and QA is the definition of a surgical plan-i.e. the desired trajectories and device selection for target vertebrae-conventionally requiring time-consuming manual annotations by a skilled surgeon. We propose automation of such planning by deriving the pedicle trajectory and device selection from a patient's preoperative CT or MRI. An atlas of vertebrae surfaces was created to provide the underlying basis for automatic planning-in this work, comprising 40 exemplary vertebrae at three levels of the spine (T7, T8, and L3). The atlas was enriched with ideal trajectory annotations for 60 pedicles in total. To define trajectories for a given patient, sparse deformation fields from the atlas surfaces to the input (CT or MR image) are applied on the annotated trajectories. Mean value coordinates are used to interpolate dense deformation fields. The pose of a straight trajectory is optimized by image-based registration to an accumulated volume of the deformed annotations. For evaluation, input deformation fields were created using coherent point drift (CPD) to perform a leave-one-out analysis over the atlas surfaces. CPD registration demonstrated surface error of 0.89 ± 0.10 mm (median ± interquartile range) for T7/T8 and 1.29 ± 0.15 mm for L3. At the pedicle center, registered trajectories deviated from the expert reference by 0.56 ± 0.63 mm (T7/T8) and 1.12 ± 0.67 mm (L3). The predicted maximum screw diameter differed by 0.45 ± 0.62 mm (T7/T8), and 1.26 ± 1.19 mm (L3). The automated planning method avoided screw collisions in all cases and demonstrated close agreement overall with expert reference plans, offering a potentially valuable tool in support of surgical guidance and QA.
Purpose Intraoperative x-ray radiography/fluoroscopy is commonly used to assess the placement of surgical devices in the operating room (e.g., spine pedicle screws), but qualitative interpretation can fail to reliably detect suboptimal delivery and/or breach of adjacent critical structures. We present a 3D-2D image registration method wherein intraoperative radiographs are leveraged in combination with prior knowledge of the patient and surgical components for quantitative assessment of device placement and more rigorous quality assurance (QA) of the surgical product. Methods The algorithm is based on known-component registration (KC-Reg) in which patient-specific preoperative CT and parametric component models are used. The registration performs optimization of gradient similarity, removes the need for offline geometric calibration of the C-arm, and simultaneously solves for multiple component bodies, thereby allowing QA in a single step (e.g., spinal construct with 4–20 screws). Performance was tested in a spine phantom, and first clinical results are reported for QA of transpedicle screws delivered in a patient undergoing thoracolumbar spine surgery. Results Simultaneous registration of 10 pedicle screws (5 contralateral pairs) demonstrated mean target registration error (TRE) of 1.1 ± 0.1 mm at the screw tip and 0.7 ± 0.4° in angulation when a prior geometric calibration was used. The calibration-free formulation, with the aid of component collision constraints, achieved TRE of 1.4 ± 0.6 mm. In all cases, a statistically significant improvement (p < 0.05) was observed for the simultaneous solutions in comparison to previously reported sequential solution of individual components. Initial application in clinical data in spine surgery demonstrated TRE of 2.7 ± 2.6 mm and 1.5 ± 0.8°. Conclusions The KC-Reg algorithm offers an independent check and quantitative QA of the surgical product using radiographic / fluoroscopic views acquired within standard OR workflow. Such intraoperative assessment could improve quality and safety, provide the opportunity to revise suboptimal constructs in the OR, and reduce the frequency of revision surgery.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.