In triploid (seedless) watermelon [Citrullus lanatus var. lanatus (Thunb. Matsum. and Nakai)], hollow heart (HH) is a disorder that is expressed as a crack in the center of the fruit that expands to an open cavity. Although HH incidence and severity is part of a screening process for marketable watermelon fruit during cultigen evaluations, HH incidence is highly variable with growing season, even when the best cultural practices are used. Placental tissue firmness is also measured because firmness is related to the marketability of watermelon and may be related to HH. Genetic and environmental factors can influence watermelon HH development, including plant genetics, pollen amount and viability, pollinator activity, and temperature and rainfall fluctuations. We used seedless watermelon cultigen evaluation data collected over 3 years (2012–14) to determine the relationship between germplasm HH and tissue firmness. Transplanted watermelon representing 30 to 44 cultigens per year were grown at the Central Crops Research Station, Clayton, NC, and interplanted with pollenizers ‘Ace’ and/or ‘SP-6’. Harvested fruit were cut length-wise and rated for HH incidence and severity. Flesh firmness was determined by a handheld penetrometer at five locations in the flesh (stem end, top side, ground spot, blossom end, and heart). A common cultigen subset, consisting of 13 cultigens that were grown in all three experiments, was used for analysis of HH severity and incidence, and placental firmness. The presence of HH was negatively correlated with tissue firmness in both the large multiyear cultigen set (R2 = −0.32; P = 0.0001) and the common cultigen set (R2 = −0.78; P = 0.0001). Cultigens with lower watermelon tissue firmness values had higher HH incidence and severity. By using multiyear cultigen studies and logistic regression, we were able to detect trends for cultigen susceptibility to this highly variable disorder. Using logistic regression, the probability of HH development was highest for ‘Bold Ruler’, ‘Liberty’, and ‘Affirmed’, and lowest for ‘Maxima’ and ‘Captivation’. The identification of cultigens with a tendency for higher or lower rates of HH will be useful for further research of the causes of HH. Measurements of placental flesh firmness may be useful indicators of susceptible cultigens.
Tomatoes (Solanum lycopersicum) are heavy nutrient feeding crops and require high amounts of nitrogen to maximize fruit production. The type of nitrogen applied and timing of fertilizer applications are important to reduce losses due to volatilization and leaching. Previous research suggested that nitrogen stable isotopes are a useful fingerprinting system for indicating if a crop has been grown with synthetic or organic nitrogen applications. To study the effects of fertilization systems on nitrogen isotopic patterns, “Better Bush” tomatoes were grown in a 2 year greenhouse experiment to analyze nitrogen isotopic composition, nitrogen content, and fruit yield. Three main soil fertility treatments were evaluated, and the results were compared to those obtained on plants grown in unfertilized soil: conventional inorganic (synthetic Miracle Grow (MG)), organic (bonemeal and bloodmeal (BB), BB with liquid Earth Juice (BBL), BB with 25% vermicompost (VC), BBL with 25% VC, and 25% VC), and mixed (MG with 25% VC). The soil fertilizers, treated and untreated soil, immature and mature leaflets tomato fruit peels, and fruit juices were analyzed for both nitrogen isotope ratios and nitrogen concentrations. Plant δ15Nair decreased in the order organic treatment-no fertilizer-mixed treatment-conventional treatment. The average δ15Nair values in leaves, fruit peels, and juice from plants grown with organic treatments ranged from 4.5 to 11.9, 5.4 to 10.1, and 6.1 to 11.1‰, respectively, whereas in the case of the inorganic treatment, the average δ15Nair values varied between −3.0 and 0.4, −1.1 and 0.4, and −0.9 and 1.9‰, respectively. Plant nitrogen concentrations in tomato decreased in the following order (from highest to lowest): inorganic soil fertility treatment, mixed treatments, and organic and control (no fertilizer) treatment. The average weight %N values in leaves and fruit peels from plants grown with organic treatments ranged from 1.3 to 4.2 and 1.1 to 2.3%, respectively, whereas in the case of the inorganic treatment, the average weight %N values varied between 3.7 and 5 and 1.3 and 2.8%, respectively. Plants grown under organic treatments have higher δ15Nair, lower weight %N, and are enriched in 15N compared with the original soil than plants grown with inorganic fertilizer, suggesting that the synthetic nitrogen sources are more readily available for plant uptake than the organic ones. The addition of vermicompost increases both δ15Nair and weight %N in plants. Tomato fruit yields did not differ between cluster 1 and cluster 2 harvest, however, total tomato fruit yields differed indicating that synthetically fertilized plants produced the highest total yields (g) (P ≤ 0.05). However, all treatments with VC soil applications indicated an increase in the amount of plant nitrogen, fruit yield, soil cation exchange capacity, soil organic matter content, and released soil nitrogen. Nitrogen isotope ratios of tomatoes can be used to distinguish among various soil fertility treatments, therefore fingerprinting the organ...
Grafting watermelon scions to interspecific squash hybrids has been found to increase fruit firmness. Triploid (seedless) watermelon are prone to hollow heart (HH), an internal fruit disorder characterized by a crack in the placental tissue expanding to a cavity. Although watermelon with lower tissue firmness tend to have a higher HH incidence, associated differences in cell wall polysaccharide composition are unknown. Grafting “Liberty” watermelon to “Carnivor” (interspecific hybrid rootstock, C. moschata × C. maxima) reduced HH 39% and increased tissue firmness by 3 N. Fruit with and without severe HH from both grafted and non-grafted plants were analyzed to determine differences in cell wall polysaccharides associated with grafting and HH. Alcohol insoluble residues (AIR) were sequentially extracted from placental tissue to yield water soluble (WSF), carbonate soluble (CSF), alkali soluble (ASF), or unextractable (UNX) pectic fractions. The CSF was lower in fruit with HH (24.5%) compared to those without HH (27.1%). AIRs were also reduced, hydrolyzed, and acetylated for GC-MS analysis of monosaccharide composition, and a portion of each AIR was methylated prior to hydrolysis and acetylation to produce partially methylated alditol acetates for polysaccharide linkage assembly. No differences in degree of methylation or galacturonic and glucuronic acid concentrations were found. Glucose and galactose were in highest abundance at 75.9 and 82.4 μg⋅mg–1 AIR, respectively, followed by xylose and arabinose (29.3 and 22.0 μg⋅mg–1). Mannose was higher in fruit with HH (p < 0.05) and xylose was highest in fruit from grafted plants (p < 0.05). Mannose is primarily found in heteromannan and rhamnogalacturonan I side chains, while xylose is found in xylogalacturonan or heteroxylan. In watermelon, 34 carbohydrate linkages were identified with galactose, glucose, and arabinose linkages in highest abundance. This represents the most comprehensive polysaccharide linkage analysis to date for watermelon, including the identification of several new linkages. However, total pectin and cell wall composition data could not explain the increased tissue firmness observed in fruit from grafted plants. Nonetheless, grafting onto the interspecific hybrid rootstock decreased the incidence of HH and can be a useful method for growers using HH susceptible cultivars.
Grafting high yielding tomato cultivars (Solanum lycopersicum L.) onto vigorous rootstocks can increase marketable yields, but questions remain regarding optimal cultural and growing conditions such as pinching and plant spacing. This study addressed some of the dynamics between grafted plants and cultural practices. Two scions, ‘Tasti-Lee’ (TL) and ‘Mountain Fresh Plus’ (MFP) were grafted onto each of three rootstocks, ‘Beaufort’, ‘Arnold’, and ‘Shield’. Plants were pinched (removal of main shoot to induce both axillary shoots to grow) or non-pinched, and spaced at 56 or 61 cm. All 32 grafted treatments were compared to the grower standard: non-grafted TL and MFP spaced at 46 cm, which were non-pinched. Fruit quality traits including soluble solids content, pH, lycopene concentration, and titratable acidity were recorded for fruit harvested from tomatoes grafted onto ‘Arnold’, ‘Beaufort’, ‘Shield’ and non-grafted TL. The overall effect of grafting TL and MFP onto vigorous rootstocks ‘Arnold’, ‘Beaufort’, and ‘Fortamino’ increased marketable yields per hectare by 24-35% compared to non-grafted grower standards. The rootstock ‘Shield’ did not significantly increase yields with either scion. TL had a more positive response to grafting than MFP. ‘Arnold’, ‘Beaufort’, and ‘Fortamino’ significantly increased TL fruit size, but the fruit size results were not as significantly impacted by graft treatments for MFP. Plants spaced at 56 compared to 61 cm generated similar yields. Pinched plants significantly increased yields over non-pinched plants by 15% in 2018 but did not impact yield in 2017. No consistent difference was observed between pinched and non-pinched plants with regard to fruit size, only plants grafted with ‘Shield’ benefited significantly from being pinched. Soluble solids content, pH, total lycopene concentration, and titratable acidity differed slightly between grafted and non-grafted plants but was unlikely to positively or negatively affect overall perception of fruit quality in tomatoes. A partial budget analysis revealed that grafting with ‘Arnold’ or ‘Beaufort’ consistently increased profits in this low-disease field.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.