To investigate the role of the presumed DNA mismatch repair (MMR) gene Msh2 in genome stability and tumorigenesis, we have generated cells and mice that are deficient for the gene. Msh2-deficient cells have lost mismatch binding and have acquired microsatellite instability, a mutator phenotype, and tolerance to methylating agents. Moreover, in these cells, homologous recombination has lost dependence on complete identity between interacting DNA sequences, suggesting that Msh2 is involved in safeguarding the genome from promiscuous recombination. Msh2-deficient mice display no major abnormalities, but a significant fraction develops lymphomas at an early age. Thus, Msh2 is involved in MMR, controlling several aspects of genome stability; loss of MMR-controlled genome stability predisposes to cancer.
Hemizygosity for the retinoblastoma gene RB in man strongly predisposes to retinoblastoma. In the mouse, however, Rb hemizygosity leaves the retina normal, whereas in Rb −/− chimeras pRb-deficient retinoblasts undergo apoptosis. To test whether concomitant inactivation of the Rb-related gene p107 is required to unleash the oncogenic potential of pRb deficiency in the mouse retina, we inactivated both Rb and p107 by homologous recombination in embryonic stem cells and generated chimeric mice. Retinoblastomas were found in five out of seven adult pRb/p107-deficient chimeras. The retinal tumors showed amacrine cell differentiation, and therefore originated from cells committed to the inner but not the outer nuclear layer. Retinal lesions were already observed at embryonic day 17.5. At this stage, the primitive nuclear layer exhibited severe dysplasia, including rosette-like arrangements, and apoptosis. These findings provide formal proof for the role of loss of Rb in retinoblastoma development in the mouse and the first in vivo evidence that p107 can exert a tumor suppressor function.
Members of the mammalian mismatch repair protein family of MutS and MutL homologs have been implicated in postreplicative mismatch correction and chromosome interactions during meiotic recombination. Here we demonstrate that mice carrying a disruption in MutS homolog Msh5 show a meiotic defect, leading to male and female sterility. Histological and cytological examination of prophase I stages in both sexes revealed an extended zygotene stage, characterized by impaired and aberrant chromosome synapsis, that was followed by apoptotic cell death. Thus, murine Msh5 promotes synapsis of homologous chromosomes in meiotic prophase I.
Myotonic dystrophy (DM) is commonly associated with CTG repeat expansions within the gene for DM-protein kinase (DMPK). The effect of altered expression levels of DMPK, which is ubiquitously expressed in all muscle cell lineages during development, was examined by disrupting the endogenous Dmpk gene and overexpressing a normal human DMPK transgene in mice. Nullizygous (-/-) mice showed only inconsistent and minor size changes in head and neck muscle fibres at older age, animals with the highest DMPK transgene expression showed hypertrophic cardiomyopathy and enhanced neonatal mortality. However, both models lack other frequent DM symptoms including the fibre-type dependent atrophy, myotonia, cataract and male-infertility. These results strengthen the contention that simple loss- or gain-of-expression of DMPK is not the only crucial requirement for development of the disease.
Cancer predisposition in hereditary non-polyposis colon cancer (HNPCC) is caused by defects in DNA mismatch repair (MMR). Mismatch recognition is attributed to two heterodimeric protein complexes: MutSalpha (refs 2, 3, 4, 5), a dimer of MutS homologues MSH2 and MSH6; and MutSbeta (refs 2,7), a dimer of MSH2 and MSH3. These complexes have specific and redundant mismatch recognition capacity. Whereas MSH2 deficiency ablates the activity of both dimers, causing strong cancer predisposition in mice and men, loss of MSH3 or MSH6 (also known as GTBP) function causes a partial MMR defect. This may explain the rarity of MSH6 and absence of MSH3 germline mutations in HNPCC families. To test this, we have inactivated the mouse genes Msh3 (formerly Rep3 ) and Msh6 (formerly Gtmbp). Msh6-deficient mice were prone to cancer; most animals developed lymphomas or epithelial tumours originating from the skin and uterus but only rarely from the intestine. Msh3 deficiency did not cause cancer predisposition, but in an Msh6 -deficient background, loss of Msh3 accelerated intestinal tumorigenesis. Lymphomagenesis was not affected. Furthermore, mismatch-directed anti-recombination and sensitivity to methylating agents required Msh2 and Msh6, but not Msh3. Thus, loss of MMR functions specific to Msh2/Msh6 is sufficient for lymphoma development in mice, whereas predisposition to intestinal cancer requires loss of function of both Msh2/Msh6 and Msh2/Msh3.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.