Strong social ties correspond with better health and well being, but the neural mechanisms linking social contact to health remain speculative. This study extends work on the social regulation of brain activity by supportive handholding in 110 participants (51 female) of diverse racial and socioeconomic origins. In addition to main effects of social regulation by handholding, we assessed the moderating effects of both perceived social support and relationship status (married, cohabiting, dating or platonic friends). Results suggest that, under threat of shock, handholding by familiar relational partners attenuates both subjective distress and activity in a network associated with salience, vigilance and regulatory self-control. Moreover, greater perceived social support corresponded with less brain activity in an extended network associated with similar processes, but only during partner handholding. In contrast, we did not observe any regulatory effects of handholding by strangers, and relationship status did not moderate the regulatory effects of partner handholding. These findings suggest that contact with a familiar relational partner is likely to attenuate subjective distress and a variety of neural responses associated with the presence of threat. This effect is likely enhanced by an individual’s expectation of the availability of support from their wider social network.
Multi-subject functional magnetic resonance imaging (fMRI) data has been increasingly used to study the population-wide relationship between human brain activity and individual biological or behavioral traits. A common method is to regress the scalar individual response on imaging predictors, known as a scalar-on-image (SI) regression. Analysis and computation of such massive and noisy data with complex spatio-temporal correlation structure is challenging. In this article, motivated by a psychological study on human affective feelings using fMRI, we propose a joint Ising and Dirichlet Process (Ising-DP) prior within the framework of Bayesian stochastic search variable selection for selecting brain voxels in high-dimensional SI regressions. The Ising component of the prior makes use of the spatial information between voxels, and the DP component groups the coefficients of the large number of voxels to a small set of values and thus greatly reduces the posterior computational burden. To address the phase transition phenomenon of the Ising prior, we propose a new analytic approach to derive bounds for the hyperparameters, illustrated on 2-and 3-dimensional lattices. The proposed method is compared with several alternative methods via simulations, and is applied to the fMRI data collected from the KLIFF hand-holding experiment.
Life history theory suggests that adult reward sensitivity should be best explained by childhood, but not current, socioeconomic conditions. In this functional magnetic resonance imaging (fMRI) study, 83 participants from a larger longitudinal sample completed the monetary incentive delay (MID) task in adulthood (~25 years old). Parent-reports of neighborhood quality and parental SES were collected when participants were 13 years of age. Current income level was collected concurrently with scanning. Lower adolescent neighborhood quality, but neither lower current income nor parental SES, was associated with heightened sensitivity to the anticipation of monetary gain in putative mesolimbic reward areas. Lower adolescent neighborhood quality was also associated with heightened sensitivity to the anticipation of monetary loss activation in visuo-motor areas. Lower current income was associated with heightened sensitivity to anticipated loss in occipital areas and the operculum. We tested whether externalizing behaviors in childhood or adulthood could better account for neighborhood quality findings, but they did not. Findings suggest that neighborhood ecology in adolescence is associated with greater neural reward sensitivity in adulthood above the influence of parental SES or current income and not mediated through impulsivity and externalizing behaviors.
Neuroimaging studies using the social-exclusion paradigm Cyberball indicate increased dorsal anterior cingulate cortex (dACC) and right insula activity as a function of exclusion. However, comparatively less work has been done on how social status factors may moderate this finding. This study used the Cyberball paradigm with 85 (45 females) socio-economically diverse participants from a larger longitudinal sample. We tested whether neighborhood quality during adolescence would predict subsequent neural responding to social exclusion in young adulthood. Given previous behavioral studies indicating greater social vigilance and negative evaluation as a function of lower status, we expected that lower adolescent neighborhood quality would predict greater dACC activity during exclusion at young adulthood. Our findings indicate that young adults who lived in low-quality neighborhoods in adolescence showed greater dACC activity to social exclusion than those who lived in higher quality neighborhoods. Lower neighborhood quality also predicted greater prefrontal activation in the superior frontal gyrus, dorsal medial prefrontal cortex and the middle frontal gyrus, possibly indicating greater regulatory effort. Finally, this effect was not driven by subsequent ratings of distress during exclusion. In sum, adolescent neighborhood quality appears to potentiate neural responses to social exclusion in young adulthood, effects that are independent of felt distress.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.