Untargeted next-generation sequencing has a high negative predictive value and detects more clinically relevant viruses and bacteria than conventional microbiological methods. Untargeted next-generation sequencing is therefore a promising method for microbiological diagnosis in immunocompromised adults.
Fibroblasts are important players in regulating tissue homeostasis. In the dermis, they are involved in wound healing where they differentiate into contractile myofibroblasts leading to wound closure. In nonhealing chronic wounds, fibroblasts fail to undertake differentiation. We established and used a human ex vivo model of chronic wounds where fibroblasts can undergo normal myofibroblast differentiation, or take on a nondifferentiable pathological state. At the whole genome scale, we identified the genes that are differentially regulated in these two cell fates. By coupling the search of evolutionary conserved regulatory elements with global gene network expression changes, we identified transcription factors (TF) potentially involved in myofibroblast differentiation, and constructed a network of relationship between these key factors. Among these, we found that TCF4, SOX9, EGR2, and FOXS1 are major regulators of fibroblast to myofibroblast differentiation. Conversely, down-regulation of MEOX2, SIX2, and MAF causes reprogramming of fibroblasts to myofibroblasts even in absence of TGF-b, the natural inducer of myofibroblast differentiation. These results provide insight into the fibroblast differentiation program and reveal a TF network essential for cellular reprogramming. They could lead to the development of new therapeutics to treat fibroblast-related human pathologies.
Heparin is one of the main pharmaceutical products manufactured from raw animal material. In order to describe the viral burden associated with this raw material, we performed high-throughput sequencing (HTS) on mucus samples destined for heparin manufacturing, which were collected from European pigs. We identified Circoviridae and Parvoviridae members as the most prevalent contaminating viruses, together with viruses from the Picornaviridae, Astroviridae, Reoviridae, Caliciviridae, Adenoviridae, Birnaviridae, and Anelloviridae families. Putative new viral species were also identified. The load of several known or novel small non-enveloped viruses, which are particularly difficult to inactivate or eliminate during heparin processing, was quantified by qPCR. Analysis of the combined HTS and specific qPCR results will influence the refining and validation of inactivation procedures, as well as aiding in risk analysis of viral heparin contamination.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.