Metabolic rate determines the physiological and life-history performances of ectotherms. Thus, the extent to which such rates are sensitive and plastic to environmental perturbation is central to an organism's ability to function in a changing environment. Little is known of long-term metabolic plasticity and potential for metabolic adaptation in marine ectotherms exposed to elevated p CO 2 . Consequently, we carried out a series of in situ transplant experiments using a number of tolerant and sensitive polychaete species living around a natural CO 2 vent system. Here, we show that a marine metazoan (i.e. Platynereis dumerilii ) was able to adapt to chronic and elevated levels of p CO 2 . The vent population of P. dumerilii was physiologically and genetically different from nearby populations that experience low p CO 2 , as well as smaller in body size. By contrast, different populations of Amphiglena mediterranea showed marked physiological plasticity indicating that adaptation or acclimatization are both viable strategies for the successful colonization of elevated p CO 2 environments. In addition, sensitive species showed either a reduced or increased metabolism when exposed acutely to elevated p CO 2 . Our findings may help explain, from a metabolic perspective, the occurrence of past mass extinction, as well as shed light on alternative pathways of resilience in species facing ongoing ocean acidification.
Maintaining and enabling evolutionary processes within meta‐populations are critical to resistance, resilience and adaptive potential. Knowledge about which populations act as sources or sinks, and the direction of gene flow, can help to focus conservation efforts more effectively and forecast how populations might respond to future anthropogenic and environmental pressures. As a foundation species and habitat provider, Zostera marina (eelgrass) is of critical importance to ecosystem functions including fisheries. Here, we estimate connectivity of Z. marina in the Skagerrak–Kattegat region of the North Sea based on genetic and biophysical modelling. Genetic diversity, population structure and migration were analysed at 23 locations using 20 microsatellite loci and a suite of analytical approaches. Oceanographic connectivity was analysed using Lagrangian dispersal simulations based on contemporary and historical distribution data dating back to the late 19th century. Population clusters, barriers and networks of connectivity were found to be very similar based on either genetic or oceanographic analyses. A single‐generation model of dispersal was not realistic, whereas multigeneration models that integrate stepping‐stone dispersal and extant and historic distribution data were able to capture and model genetic connectivity patterns well. Passive rafting of flowering shoots along oceanographic currents is the main driver of gene flow at this spatial–temporal scale, and extant genetic connectivity strongly reflects the “ghost of dispersal past“ sensu Benzie, 1999. The identification of distinct clusters, connectivity hotspots and areas where connectivity has become limited over the last century is critical information for spatial management, conservation and restoration of eelgrass.
Despite its potential importance for the biological control of European rabbits, relatively little is known about the evolution and molecular epidemiology of rabbit calicivirus Australia 1 (RCV-A1). To address this issue we undertook an extensive evolutionary analysis of 36 RCV-A1 samples collected from wild rabbit populations in southeast Australia between 2007 and 2009. Based on phylogenetic analysis of the entire capsid sequence, six clades of RCV-A1 were defined, each exhibiting strong population subdivision. Strikingly, our estimates of the time to the most recent common ancestor of RCV-A1
The seagrass Posidonia oceanica is a key engineering species structuring coastal marine systems throughout much of the Mediterranean basin. Its decline is of concern, leading to the search for short- and long-term indicators of seagrass health. Using ArcGIS maps from a recent, high-resolution (1-4 km) modelling study of 18 disturbance factors affecting coastal marine systems across the Mediterranean (Micheli et al. 2013, http://globalmarine.nceas.ucsb.edu/mediterranean/), we tested for correlations with genetic diversity metrics (allelic diversity, genotypic/clonal diversity and heterozygosity) in a meta-analysis of 56 meadows. Contrary to initial predictions, weak but significantly positive correlations were found for commercial shipping, organic pollution (pesticides) and cumulative impact. This counterintuitive finding suggests greater resistance and resilience of individuals with higher genetic and genotypic diversity under disturbance (at least for a time) and/or increased sexual reproduction under an intermediate disturbance model. We interpret the absence of low and medium levels of genetic variation at impacted locations as probable local extinctions of individuals that already exceeded their resistance capacity. Alternatively, high diversity at high-impact sites is likely a temporal artefact, reflecting the mismatch with pre-environmental impact conditions, especially because flowering and sexual recruitment are seldom observed. While genetic diversity metrics are a valuable tool for restoration and mitigation, caution must be exercised in the interpretation of correlative patterns as found in this study, because the exceptional longevity of individuals creates a temporal mismatch that may falsely suggest good meadow health status, while gradual deterioration of allelic diversity might go unnoticed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.