The aim of this study was to identify the relative frequency of Huntington's disease (HD) and HD-like (HDL) disorders HDL1, HDL2, spinocerebellar ataxia type 2 (SCA2), SCA17, dentatorubral-pallidoluysian degeneration (DRPLA), benign hereditary chorea, neuroferritinopathy and chorea-acanthocytosis (CHAC), in a series of Brazilian families. Patients were recruited in seven centers if they or their relatives presented at least chorea, besides other findings. Molecular studies of HTT, ATXN2, TBP, ATN1, JPH3, FTL, NKX2-1/TITF1 and VPS13A genes were performed. A total of 104 families were ascertained from 2001 to 2012: 71 families from South, 25 from Southeast and 8 from Northeast Brazil. There were 93 HD, 4 HDL2 and 1 SCA2 families. Eleven of 104 index cases did not have a family history: 10 with HD. Clinical characteristics were similar between HD and non-HD cases. In HD, the median expanded (CAG)n (range) was 44 (40-81) units; R(2) between expanded HTT and age-at-onset (AO) was 0.55 (p=0.0001, Pearson). HDL2 was found in Rio de Janeiro (2 of 9 families) and Rio Grande do Sul states (2 of 68 families). We detected HD in 89.4%, HDL2 in 3.8% and SCA2 in 1% of 104 Brazilian families. There were no cases of HDL1, SCA17, DRPLA, neuroferritinopathy, benign hereditary chorea or CHAC. Only six families (5.8%) remained without diagnosis.
Migraine is a common neurological episodic disorder with a female-to-male prevalence 3- to 4-fold higher, suggesting a possible X-linked genetic component. Our aims were to assess the role of common variants of gamma-aminobutyric acid A receptor (GABAAR) genes, located in the X-chromosome, in migraine susceptibility and the possible interaction between them. An association study with 188 unrelated cases and 286 migraine-free controls age- and ethnic matched was performed. Twenty-three tagging SNPs were selected in three genes (GABRE, GABRA3 and GABRQ). Allelic, genotypic and haplotypic frequencies were compared between cases and controls. We also focused on gene-gene interactions. The AT genotype of rs3810651 of GABRQ gene was associated with an increased risk for migraine (OR: 4.07; 95% CI: 1.71-9.73, p=0.002), while the CT genotype of rs3902802 (OR: 0.41; 95% CI: 0.21-0.78, p=0.006) and GA genotype of rs2131190 of GABRA3 gene (OR: 0.53; 95% CI: 0.32-0.88, p=0.013) seem to be protective factors. All associations were found in the female group and maintained significance after Bonferroni correction. We also found three nominal associations in the allelic analyses although there were no significant results in the haplotypic analyses. Strikingly, we found strong interactions between six SNPs encoding for different subunits of GABAAR, all significant after permutation correction. To our knowledge, we show for the first time, the putative involvement of polymorphisms in GABAAR genes in migraine susceptibility and more importantly we unraveled a role for novel gene-gene interactions opening new perspectives for the development of more effective treatments.
Objective A number of observations, including among our study population, have implicated variants in the syntaxin‐1A, a component of the synaptic vesicles, in migraine susceptibility. Therefore, we hypothesize that variants in other components of the vesicle machinery are involved in migraine. Background Migraine is a common and complex neurologic disorder that affects approximately 15‐18% of the general population. The exact cause of migraine is unknown; however, genetic studies have made possible substantial progress toward the identification of underlying molecular pathways. Neurotransmitters have been for long considered to have a key role in migraine pathophysiology; so we investigated common variants in genes involved in the synaptic vesicle machinery and their impact in migraine susceptibility. Methods We performed a case‐control study comprising 188 unrelated patients with headache and 286 healthy controls in a population from the north of Portugal. Benefiting from the presence of linkage disequilibrium, we selected and genotyped 119 tagging single‐nucleotide polymorphisms in 18 genes. Results We found significant associations between single‐nucleotide variants and migraine in 7 genes, SYN1, SYN2, SNAP25, VAMP2, STXBP1, STXBP5, and UNC13A, either conferring an increased risk or protection of migraine. Due to SYN1 X‐chromosomal location, we performed the statistical analysis separated by gender and, in the female group, the C allele of rs5906435 increased the risk for migraine susceptibility (P = .021; OR = 1.69; 95% CI: 1.21‐2.34). In contrast, the TT genotype of the same variant emerged as a potential protective factor (P = .003; OR = 0.45; 95% CI: 0.27‐0.74). The SYN2 analysis supported the rs3773364's G allele (P = .014) as a risk factor for migraine, and although not statistically significant after correction, the AG genotype (P = .006; OR = 1.86; 95% CI: 1.20‐2.90) reinforced the allelic findings. Additionally, we found the SNAP25‐rs363039's CT genotype (P = .001; OR = 2.14; 95% CI: 1.36‐3.34), the STXBP5‐rs1765028's T allele (P = .041; OR = 1.46; 95% CI: 1.13‐1.90), and the UNC13B‐rs7851161's TT genotype (P = .001; OR = 2.14; 95% CI: 1.36‐3.34) as statistically significant risk factors for migraine liability. VAMP2‐rs1150's G allele revealed a risk association to migraine, not statistically significant after correction (P = .068). Additionally, we found haplotypes in SYN1, SYN2, STXBP1, and UNC13B to be associated with migraine. Conclusions Overall, this study provides a new insight into migraine liability, identifying possible starting points for functional studies.
Background Migraine is a multifactorial disorder that is more frequent (two to four times) in women than in men. In recent years, our research group has focused on the role of neurotransmitter release and its regulation. Neurexin (NRXN2) is one of the components of the synaptic vesicle machinery, responsible for connecting intracellular fusion proteins and synaptic vesicles. Our aim was to continue exploring the role and interaction of proteins involved in the control and promotion of neurotransmission in migraine susceptibility. Methods A case-control study was performed comprising 183 migraineurs (148 females and 35 males) and 265 migraine-free controls (202 females and 63 males). Tagging single nucleotide polymorphisms of NRXN2 were genotyped to assess the association between NRXN2 and migraine susceptibility. The χ2 test was used to compare allele frequencies in cases and controls and odds ratios were estimated with 95% confidence intervals. Haplotype frequencies were compared between groups. Gene-gene interactions were analysed using the Multifactor Dimensionality Reduction v2.0. Results We found a statistically significant interaction model (p = 0.009) in the female group between the genotypes CG of rs477138 (NRXN2) and CT of rs1158605 (GABRE). This interaction was validated by logistic regression, showing a significant risk effect [OR = 4.78 (95%CI: 1.76–12.97)] after a Bonferroni correction. Our data also supports a statistically significant interaction model (p = 0.011) in the female group between the GG of rs477138 in NRXN2 and, the rs2244325's GG genotype and rs2998250’s CC genotype of CASK. This interaction was also validated by logistic regression, with a protective effect [OR = 0.08 (95%CI: 0.01–0.75)]. A weak interaction model was found between NRXN2-SYT1. We have not found any statistically significant allelic or haplotypic associations between NRXN2 and migraine susceptibility. Conclusions This study unravels, for the first time, the gene-gene interactions between NRXN2, GABRE - a GABAA-receptor - and CASK, importantly it shows the synergetic effect between those genes and its relation with migraine susceptibility. These gene interactions, which may be a part of a larger network, can potentially help us in better understanding migraine aetiology and in development of new therapeutic approaches.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.